Interaction of Csk with PAG

Garapati, P V., Rudd, C.E., Trowsdale, J., de Bono, B.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 73

This document contains 1 reaction (see Table of Contents)
Interaction of Csk with PAG

Stable identifier: R-HSA-203774

Type: binding

Compartments: cytosol, plasma membrane

Csk is a tyrosine kinase that phosphorylates the negative regulatory C-terminal tyrosine residue Y505 of Lck to maintain Lck in an inactive state. In resting T cells, Csk is targeted to lipid rafts through engagement of its SH2 domain with phosphotyrosine residue pY317 of PAG. PAG is expressed as a tyrosine phosphorylated protein in nonstimulated T-cells. This interaction of Csk and PAG allows activation of Csk and inhibition of Lck. Given that PAG-1 T cell knock out show a weak phenotype, some other protein may substitute in activating Csk.

Literature references

Editions

2008-02-26 Reviewed Trowsdale, J.