Phosphorylation of MOB1A and B by p-STK4 (p-MST1)

D'Eustachio, P., Sudol, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

05/11/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 1 reaction (see Table of Contents)
Phosphorylation of MOB1A and MOB1B by p-STK4 (p-MST1)

Stable identifier: R-HSA-2028629

Type: transition

Compartments: cytosol

Cytosolic MOB1A and MOB1B are phosphorylated by phosho-STK4 (p-MST1). Phosphorylated (active) STK4 (p-MST1) and SAV1 are known to form a complex and that complex is annotated as the catalyst of this reaction. Threonine residues 12 and 35 have been experimentally identified as the targets of MOB1A phosphorylation; the homologous residues of MOB1B are inferred likewise to be targets (Praskova et al. 2008).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-12-30</td>
<td>Edited</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2012-02-03</td>
<td>Authored</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2012-02-03</td>
<td>Reviewed</td>
<td>Sudol, M.</td>
</tr>
</tbody>
</table>