Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Adams, EJ., Barrow, AD., Garapati, P V., Jupe, S., Luoma, AM., Ouwehand, WH., Shamovsky, V., Trowsdale, J., Zajonc, DM., Zarrin, AA., Zwaginga, JJ., de Bono, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 70

This document contains 1 pathway and 43 reactions (see Table of Contents)
A number of receptors and cell adhesion molecules play a key role in modifying the response of cells of lymphoid origin (such as B-, T- and NK cells) to self and tumor antigens, as well as to pathogenic organisms.

Molecules such as KIRs and LILRs form part of a crucial surveillance system that looks out for any derangement, usually caused by cancer or viral infection, in MHC Class I presentation. Somatic cells are also able to report internal functional impairment by displaying surface stress markers such as MICA. The presence of these molecules on somatic cells is picked up by C-lectin NK immune receptors.

Lymphoid cells are able to regulate their location and movement in accordance to their state of activation, and home in on tissues expressing the appropriate complementary ligands. For example, lymphoid cells may fine tune the presence and concentration of adhesion molecules belonging to the IgSF, Selectin and Integrin class that interact with a number of vascular markers of inflammation.

Furthermore, there are a number of avenues through which lymphoid cells may interact with antigen. This may be presented directly to a specific T-cell receptor in the context of an MHC molecule. Antigen-antibody complexes may anchor to the cell via a small number of lymphoid-specific Fc receptors that may, in turn, influence cell function further. Activated complement factor C3d binds to both antigen and to cell surface receptor CD21. In such cases, the far-reaching influence of CD19 on B-lymphocyte function is tempered by its interaction with CD21.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-03-27</td>
<td>Authored</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
VCAM1 binds Integrin alpha4beta1

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-198941

Type: binding

Compartments: plasma membrane

Integrins play a central role in mediating lymphocyte adhesion to a number of surfaces. Integrin alphaL-beta2 (LFA-1) interacts with Intercellular adhesion molecule (ICAM)1-5, which are typically expressed on other immune system cells. ICAM4 and 5 are known to be expressed on telencephalic neurons.

VCAM-1 regulates lymphocyte adhesion to activated endothelial cells via Very Late Antigen-4 (VLA-4). To function in a circulating mode, leukocytes express LFA-1 and VLA-4 in a low ligand binding capacity. When leukocytes reach sites of inflammation, these integrins are switched to a higher binding state to guide the complex process of transmigration, tethering, rolling, arrest, adhesion and shape change. Signal cascades between LFA-1 and VLA-4 may cross-talk affecting binding affinities in a reciprocal fashion.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
TCR complex interacts with peptide antigen-presenting MHC Class I

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-198955

Type: binding

Compartments: plasma membrane

T cells distinguish foreign material from self through presentation of fragments of the antigen by the MHC cell surface receptors. Only if an MHC molecule presents an appropriate antigenic peptide will a cellular immune response be triggered. The orchestration of recognition and signaling events, from the initial recognition of antigenic peptides to the lysis of the target cell, is performed in a localized environment on the T cell, called the immunological synapse, and requires the coordinated activities of several T-Cell Receptor (TCR)-associated molecules. This particular reaction depicts the interaction of the TCR with MHC Class I molecules on somatic cell, requiring the support of CD3 and CD8 proteins.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
NKG2D homodimer interacting with ligands

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-198983

Type: binding

Compartments: plasma membrane

NKG2D is an activating immunoreceptor. By engaging NKG2D, HLA Class I-like molecules such as MICA, MICB, ULBP1-4 and RAE-1 provide powerful costimulation for NK cells and T-cells and can determine the magnitude and outcome of certain effector functions. NKG2D ligands are upregulated on the surfaces of cells under conditions of stress, for example infection or tumorigenesis, and therefore act as molecular flags to the immune system that something is wrong.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
CD96 binds PVR

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199014

Type: binding

Compartments: plasma membrane

NK cells express adhesion molecules that allow interaction with their tumour targets, promoting their lysis.

For instance, the activating receptor CD226 is known to be involved in cytotoxic lymphocyte formation, as well as platelet adhesion to the endothelium. The cytoplasmic domain of CD226 contains binding motifs for members of the band 4.1 family of proteins, and for members of the membrane-associated guanylate kinase homolog (MAGUK) family. These proteins connect the CD226 receptor to the cytoskeleton and may promote clustering with LFA-1 integrin (also discussed in this pathway), which is known to participate in CD226's signaling cascade. CD226 plays a role in transendothelial migration, where it facilitates adherence to endothelial cells and migration between cell junctions.

Nectin-2 binds CD226. It is ubiquitously expressed in cells of various tissues, especially in epithelial cells, neurons and fibroblasts. Like many other nectin and Necl proteins, nectin-2 serves as a viral entry receptor for alpha-herpesviruses including herpes simplex virus (HSV-1 and HSV-2). The other CD226 ligand, Necl-5, was initially identified as a receptor for poliovirus.

CD96, another ligand for Necl-5, is strongly upregulated in activated NK cells.

CRTAM is similarly up-regulated, and has been shown to to bind Necl-2, promoting NK cell cytotoxicity towards otherwise poorly immunogenic targets.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
MADCAM1-1 binds Integrin alpha4beta7

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199032

Type: binding

Compartments: plasma membrane

Mucosal addressin cell adhesion molecule (MADCAM1) is present in the endothelium of mucosa, and binds alpha-4 beta-7 integrin and L-selectin, regulating both the passage and retention of leukocytes in mucosal tissues. MADCAM1 has been shown to be present as a homodimer.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
Leukocyte immunoglobulin (Ig)-like receptors [LILRs, also known as Ig-like transcripts (ILTs)] are a family of inhibitory and stimulatory receptors encoded within the leukocyte receptor complex and are expressed by immune cell types of both myeloid and lymphoid lineage. Several members of the LILR family recognize major histocompatibility complex class I. The immunomodulatory role of LILR receptors indicates that they may exert an influence on signaling pathways of both innate and adaptive immune systems.

Signaling mechanisms are employed that are similar to the ones adopted by the closely related killer cell inhibitory receptors (KIRs). ITIMs recruit inhibitory phosphatases that dephosphorylate ITIM and ITAM domains in order to influence intracellular signaling cascades. In contrast, activating LILRs, which lack any signaling domains of their own, rely on association with an adaptor protein such as FceRI-gamma to transmit their signal through its intracellular ITAMs.

Literature references

L-selectin plays a major role in leukocyte traffic through lymph node high endothelial venules.

Both MAdCAM and GlyCAM-1 are major L-selectin ligands produced by these venules and mediate leukocyte rolling, particularly in lymphocytes. They are also expressed in mammary tissue and play an important role in the transfer of immune cells into milk secretions.

The adhesive properties of CD34 and its potential role in homing lymphocytes to lymphoid tissues mimics the mechanisms leukocytes adopt to travel to inflammatory sites.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
ICAM1-5 bind Integrin alphaLbeta2 (LFA-1)

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199050

Type: binding

Compartments: plasma membrane

Integrins play a central role in mediating lymphocyte adhesion to a number of surfaces. Integrin alphaL-beta2 (LFA-1) interacts with Intercellular adhesion molecule (ICAM)1-5, which are typically expressed on other immune system cells. ICAM4 and 5 are known to be expressed on telencephalic neurons.

VCAM-1 regulates lymphocyte adhesion to activated endothelial cells via Very Late Antigen-4 (VLA-4). To function in a circulating mode, leukocytes express LFA-1 and VLA-4 in a low ligand binding capacity. When leukocytes reach sites of inflammation, these integrins are switched to a higher binding state to guide the complex process of transmigration, tethering, rolling, arrest, adhesion and shape change. Signal cascades between LFA-1 and VLA-4 may cross-talk affecting binding affinities in a reciprocal fashion.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>

https://reactome.org
KLRC1:KLRD1 heterodimer interacts with HLA-E

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199062

Type: binding

Compartments: plasma membrane

After interaction with its ligand HLA-E, which is expressed on normal cells, the C-type lectin inhibitory receptor CD94/NKG2A suppresses activation signaling processes. CD94/NKG2A receptors continuously recycle from the cell surface through endosomal compartments and back again in a process that requires energy and the cytoskeleton. This steady state process appears to be largely unaffected by exposure to ligand.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
Epithelial cadherin binds to KLRG1

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199079

Type: binding

Compartments: plasma membrane

Inferred from: Epithelial cadherin binds to KLRG1 in mice (Mus musculus)

The lectin-like NK cell receptor KLRG1 binds to cadherins on epithelial cells and transmits inhibitory signals to the leukocyte.

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
CRTAM binds to NECL2

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199112

Type: binding

Compartments: plasma membrane

NK cells express adhesion molecules that allow interaction with their tumour targets, promoting their lysis.

For instance, the activating receptor CD226 is known to be involved in cytotoxic lymphocyte formation, as well as platelet adhesion to the endothelium. The cytoplasmic domain of CD226 contains binding motifs for members of the band 4.1 family of proteins, and for members of the membrane-associated guanylate kinase homolog (MAGUK) family. These proteins connect the CD226 receptor to the cytoskeleton and may promote clustering with LFA-1 integrin (also discussed in this pathway), which is known to participate in CD226's signaling cascade. CD226 plays a role in transendothelial migration, where it facilitates adherence to endothelial cells and migration between cell junctions.

Nectin-2 binds CD226. It is ubiquitously expressed in cells of various tissues, especially in epithelial cells, neurons and fibroblasts. Like many other nectin and Necl proteins, nectin-2 serves as a viral entry receptor for alpha-herpesviruses including herpes simplex virus (HSV-1 and HSV-2). The other CD226 ligand, Necl-5, was initially identified as a receptor for poliovirus.

CD96, another ligand for Necl-5, is strongly upregulated in activated NK cells.

CRTAM is similarly up-regulated, and has been shown to to bind Necl-2, promoting NK cell cytotoxicity towards otherwise poorly immunogenic targets.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
NK cells express adhesion molecules that allow interaction with their tumour targets, promoting their lysis.

For instance, the activating receptor CD226 is known to be involved in cytotoxic lymphocyte formation, as well as platelet adhesion to the endothelium. The cytoplasmic domain of CD226 contains binding motifs for members of the band 4.1 family of proteins, and for members of the membrane-associated guanylate kinase homolog (MAGUK) family. These proteins connect the CD226 receptor to the cytoskeleton and may promote clustering with LFA-1 integrin (also discussed in this pathway), which is known to participate in CD226's signaling cascade. CD226 plays a role in transendothelial migration, where it facilitates adherence to endothelial cells and migration between cell junctions.

Nectin-2 binds CD226. It is ubiquitously expressed in cells of various tissues, especially in epithelial cells, neurons and fibroblasts. Like many other nectin and Necl proteins, nectin-2 serves as a viral entry receptor for alpha-herpesviruses including herpes simplex virus (HSV-1 and HSV-2). The other CD226 ligand, Necl-5, was initially identified as a receptor for poliovirus.

CD96, another ligand for Necl-5, is strongly upregulated in activated NK cells.

CRTAM is similarly up-regulated, and has been shown to to bind Necl-2, promoting NK cell cytotoxicity towards otherwise poorly immunogenic targets.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
NK cells express adhesion molecules that allow interaction with their tumour targets, promoting their lysis.

For instance, the activating receptor CD226 is known to be involved in cytotoxic lymphocyte formation, as well as platelet adhesion to the endothelium. The cytoplasmic domain of CD226 contains binding motifs for members of the band 4.1 family of proteins, and for members of the membrane-associated guanylate kinase homolog (MAGUK) family. These proteins connect the CD226 receptor to the cytoskeleton and may promote clustering with LFA-1 integrin (also discussed in this pathway), which is known to participate in CD226's signaling cascade. CD226 plays a role in transendothelial migration, where it facilitates adherence to endothelial cells and migration between cell junctions.

Nectin-2 binds CD226. It is ubiquitously expressed in cells of various tissues, especially in epithelial cells, neurons and fibroblasts. Like many other nectin and Necl proteins, nectin-2 serves as a viral entry receptor for alpha-herpesviruses including herpes simplex virus (HSV-1 and HSV-2). The other CD226 ligand, Necl-5, was initially identified as a receptor for poliovirus.

CD96, another ligand for Necl-5, is strongly upregulated in activated NK cells.

CRTAM is similarly up-regulated, and has been shown to to bind Necl-2, promoting NK cell cytotoxicity towards otherwise poorly immunogenic targets.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
CD200 binds to CD200R

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199154

Type: binding

Compartments: plasma membrane

While not ubiquitously distributed, CD200 is expressed on a wide range of cell types including thymocytes, B-cells, activated T-cells, follicular dendritic cells, endothelium, CNS neurons in the central nervous system, cells in reproductive organs, keratinocytes and renal glomeruli.

CD200R is a myeloid-inhibitory receptor, despite the absence of classical ITIMs in the cytoplasmic portion of the protein.

Interestingly, CD200 is also expressed on neurons within the CNS and would be predicted to modulate activation of microglia through CD200R.

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
MHC Class I interacts with CD160

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199169

Type: binding

Compartments: plasma membrane

CD160 is a GPI-anchored lymphocyte surface receptor in which expression is mostly restricted to the highly cytotoxic NK cells. MHC class I molecules bind to CD160 receptors on circulating NK lymphocytes and this triggers their cytotoxic activity and cytokine production. NK cells stimulated by IL-15 secrete soluble CD160 protein that binds to MHC-I molecules, resulting in the inhibition of the cytotoxic CD8+ T lymphocyte activity and of the CD160-mediated NK cell cytotoxicity.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
Fc gamma receptors interact with antigen-bound IgG

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199161

Type: binding

Compartments: plasma membrane, extracellular region

Most cells of the immune system express receptors for the Fc region of IgG. This heterogeneous family of molecules plays a critical role in immunity, by linking the humoral to the cellular responses. NK cells and B cells have been shown to express exclusively Fc-gamma RIIIa and RIIb respectively.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>

https://reactome.org
CD40L binds CD40

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199404

Type: binding

Compartments: plasma membrane

CD40 is a member of the Tumour Necrosis Factor receptor family and its ligand CD40L is a type II transmembrane protein of the TNF superfamily. The latter is expressed preferentially on T-cells and platelets. In the immune system, CD40-CD40L interaction affects some key processes such as immune cell activation, differentiation, proliferation, and apoptosis. CD40-CD40L interaction also upregulates costimulatory molecules (ICAM-1, VCAM-1, E-selectin, LFA-3, B7.1, B7.2, class II MHC, and CD40 itself).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
CXADR binds to AMICA1

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199093

Type: binding

Compartments: plasma membrane

JAM members, such as JAML, bind coxsackie and adenovirus receptor (CXADR) on epithelial and endothelial cells.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-11-12</td>
<td>Authored</td>
<td>Ouwehand, WH.</td>
</tr>
<tr>
<td>2007-11-12</td>
<td>Reviewed</td>
<td>Zwaginga, JJ.</td>
</tr>
</tbody>
</table>
C3d-complexed antigen binds to complement receptor

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199518

Type: binding

Compartments: plasma membrane, extracellular region

CD19 is a lymphocyte cell surface molecule that functions as a general response regulator or rheostat, which defines signalling thresholds. These responses are influenced by signals transduced through a CD19-CD21 cell surface receptor complex, where the binding of complement C3d to CD21 links humoral immune responses with the innate immune system. The CD19-CD21 complex is composed of at least four non-covalently associated proteins: CD19, CD21(complement receptor 2), CD81 and CD225.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
KIR3DL2 interacting with HLA-A3

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199576

Type: binding

Compartments: plasma membrane

A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

KIR2DS1 interacting with HLA-C group 2 (Cw4)

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-199587

Type: binding

Compartments: plasma membrane

A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
A hallmark of human NK cells is the expression of HLA class I-specific killer-cell immunoglobulin-like receptors (KIR). KIRs are not only variably expressed on the level of single NK cells but they are also highly polymorphic and polygenic (i.e. the gene content of the KIR cluster varies from individual to individual).

There are 15 functional KIR genes known to date, 11 encoding receptors with two immunoglobulin domains (KIR2D genes) and 4 with three domains (KIR3D genes). Inhibitory KIR genes are characterized by long cytoplasmic tails featuring immunoreceptor tyrosine-based inhibitory motifs (ITIM), which upon engagement transmit inhibitory signals leading to the general shutdown of NK cell effector functions. There are six inhibitory KIRs with clearly defined specificities, all of the inhibitory kind and all for HLA class I allotypes: KIR2DL2 and KIR2DL3 for HLA-C group 1, KIR2DL1 for HLA-C group 2, KIR3DL1 for HLA-B (Bw4 epitope), KIR3DL2 with HLA-A3 and KIR2DL4 with HLA-G.

In contrast, stimulatory KIR have short cytoplasmic tails lacking ITIM, but have a charged amino acid in the transmembrane region that provides a docking site for the activating adapter molecule DAP12. KIR2DS1 is known to bind HLA-C group 2 and KIR2DS2 binds HLA-C group 1.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-07-08</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-08-06</td>
<td>Reviewed</td>
<td>Trowsdale, J.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
Natural killer cell surface protein P1A (NKRP1A or KLRB1 or CD161) receptor is a lectin like surface molecule expressed as a type II disulphide-linked homodimer on natural killer (NK) cells and subsets of T cells (Lknair et al. 1994, Mesci et al. 2006). Its expression is upregulated on mature NK cells by interleukin-12 (Poggi et al. 2007). It is thought to be involved in the regulation of NK and NKT cell function. Lectin-like transcript-1 molecule (LLT1) (also referred to as CLEC2D) a member of the KLR (killer cell lectin-like receptor) family has been identified as a ligand for the human NKRP1A (Aldemir et al. 2005, Rosen et al. 2005).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
Sialic acid binds SIGLEC

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5685607

Type: binding

Compartments: plasma membrane

Sialic acid binding immunoglobulins (Ig)-like lectins (SIGLECs) belong to I-type lectin with a selective expression on the haematopoetic cell lineages. These have amazing structural diversity each recognizing differently linked terminal sialic acid on glycoproteins and glycolipids expressed on host cells as well as pathogen (Powell & Varki 1995, Crocker 2002). Fifteen human SIGLECs have been identified so far. Interaction with various sialylated glycoconjugates, SIGLECs undertake various functions such as internalization of sialylated pathogens, attenuation of inflammation, restraining cellular activation, attenuation of damage-associated molecular pattern-mediated inflammation along with inhibition of NK cell activation (von Gunten & Bochner 2008, Pillai et al. 2012, Matthew et al. 2014). The sialic acid-binding Ig-like lectins CD33 (SIGLEC3), SIGLEC7 and -9 are inhibitory receptors expressed on human NK cells and subsets of peripheral T cells that recognise sialic acid-containing carbohydrates (Hernández-Caselles et al. 2006, Falco et al. 1999).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>

https://reactome.org
Natural killer (NK) cells express a multitude of activating and inactivating cell surface receptors through which they recognise tumors and infected cells. Among the activating receptors, the family of Ig-like molecules is termed natural cytotoxicity receptors (NCRs). These NCRs include Natural cytotoxicity triggering receptor 1 (NCR1 also referred as NKp46 or LY94), Natural cytotoxicity triggering receptor 2 (NCR2 also referred as NKp44) and Natural cytotoxicity triggering receptor 3 (NCR3 also referred as NKp30) (Hecht et al. 2009). All three NCRs are involved in the elimination of both tumor and virus infected cells. NCRs are coupled to different signal transducing adaptor proteins, including CD3zeta, FCER1G, and KARAP/DAP12.

NCR1 (NKp46) is selectively expressed by all resting and activated human NK cells (Sivori et al. 1997). NCR1 recognises and targets the direct killing of virus-infected cells. The antiviral activity is initiated by the interaction of NCR1 with hemagglutinin of influenza virus or Sendai virus (Mandelboim et al. 2001). Biochemical analysis revealed that NCR1 molecules are coupled with associated adaptor proteins CD3z and FCERIG that contain immune tyrosine-based activating motifs (ITAM) (Moretta et al. 2001).

Literature references

NCR3LG1 binds NCR3

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5685602

Type: binding

Compartments: plasma membrane

NCR3 (NKp30) is one of the natural cytotoxicity receptors (NCRs) expressed mainly on the surface of the natural killer (NK) cells. NKp30 is a major receptor targeting virus-infected cells, malignantly transformed cells, and immature dendritic cells. NCR3 (NKp30) recognizes tumor antigens B7H6, a member of the B7 family (Kaifu et al. 2011, Brandt et al. 2009). B7H6 is not expressed normally, and is found on tumor cells, and sensitizes targets to NCR3-dependent cytotoxicity by NK cells.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>

https://reactome.org
CMVPP65 binds NCR3

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-6793275

Type: binding

Compartments: plasma membrane, viral tegument

Other potential NCR3 ligands include human cytomegalovirus (HCMV) tegument protein pp65 (CMVPP65). Interaction between NCR3 and pp65 resulted in NK cell inhibition (Arnon et al.2005).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
CLEC2B binds KLRF1 dimer

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5685608

Type: binding

Compartments: plasma membrane

Killer cell lectin-like receptor subfamily F member 1 (KLRF1 also referred as NKp80 or CLEC5C) is a homodimeric C-type lectin receptor (CTLR) expressed virtually on all human NK cells, and a minor subsets of effector memory CD8 alpha/beta T cells and gamma/delta T cells (Vitale et al. 2001). NKp80 binds to the genetically linked receptor C-type lectin domain family 2 member B (CLEC2B also referred as AICL) (Welte et al. 2006). CLEC2B is expressed as a myeloid-specific activating receptor that is upregulated by Toll-like receptor stimulation (Hamann et al. 1997). NKp80-CLEC2B interaction triggers NK cell-mediated cytolysis of malignant myeloid cells. Crosslinking of both NKp80 and CLEC2B was shown to promote an activating cross-talk between NK cells and monocytes in the presence of inflammatory cytokines (Welte et al. 2006, Klimosch et al. 2013).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
SLAMF6 binds SLAMF6

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5685604

Type: binding

Compartments: plasma membrane

Members of the signaling lymphocytic-activation molecule (SLAM) family, are all encoded in the SLAM locus, and are mostly homotypic self-associating receptors expressed by cells of hemopoietic origin (Veillette et al. 2006). SLAMF6 (also called as NTB-A) is a homophilic receptor that stimulates cytotoxicity in natural killer (NK) cells, regulates bactericidal activities in neutrophils, and potentiates T helper 2 (Th2) responses (Cao et al. 2006).

Followed by: SAP and EAT2 binds SLAMF6

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Role</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
SAP and EAT2 binds SLAMF6

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5685603

Type: binding

Compartments: plasma membrane, cytosol

The cytoplasmic tails of the SLAM-family receptors contain immunoreceptor tyrosine-based switch motifs (ITSMs). These ITSMs act as docking sites for the SH2 domain of SLAM-associated protein (SAP) and the related Ewing’s sarcoma-associated transcript (EAT) 2 (Latour & Veillette 2004, Kageyama et al. 2012). Both SAP and EAT2 are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this effect by combining SLAM family receptors to the protein kinase FYN and exchange factor VAV, thereby promoting conjugate formation between NK cells and target cells. While EAT2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase C-gamma, calcium fluxes and ERK kinase (Perez-Quintero et al. 2014).

Preceded by: SLAMF6 binds SLAMF6

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Reviewer</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
SLAMF7 binds SLAMF7

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5685605

Type: binding

Compartments: plasma membrane

Signaling Lymphocyte Activation Molecule family member F7 (SLAMF7 also called as CS1 or CRACC) is a member of the CD2 family. It is expressed on CD8+ cytotoxic T lymphocytes, activated B cells, NK cells and mature dendritic cells (Boles & Mathew 2001, Bouchon et al. 2001). It has been suggested that CS1 has both activating and inhibitory functions in NK cells. It may activate NK mediated cytotoxicity through an ERK-mediated pathway in a SAP-independent manner (Bouchon et al. 2001). Most of the CD2 members interact homophilically and CS1 is shown to be a self-ligand and that homophilic interaction regulate NK cell cytolytic activity (Kumaresan et al. 2002).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Authorship</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
Leukocyte-associated Ig-like receptor-1 (LAIR1 or CD305) is a member of the Ig superfamily (IgSF), which is expressed on almost all immune cells, mostly on PBMCs and thymocytes (Meyaard et al. 1997). Collagens are functional ligands for LAIR1 and upon their interaction mediate an inhibitory signal to immune cell activation (Lebbink et al. 2006, Meyaard 2008). An interesting implication of the discovery of LAIR1 as an inhibitory collagen receptor is that tumor cells, known to upregulate collagen expression, may use this interaction to downregulate responses directed against the tumor by various effector cells (Meyaard 2010). Upon cross-linking of the receptor with mAbs, LAIR1 gets phosphorylated on the tyrosine residues in the cytoplasmic ITIMs and recruits SHP1 and SHP2 and C-terminal Src Kinase (Csk) (Verbrugge et al. 2006).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-03-27</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
</tbody>
</table>
OSCAR binds collagen and SP-D

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5696356

Type: binding

Compartments: extracellular region

Osteoclast-associated receptor (OSCAR) is specifically expressed by preosteoclasts and it signals through the ITAM-harboring adaptor protein Fc receptor gamma (FCRG) (Merck et al. 2004). Collagen types (Col)I, II, and III have been described as OSCAR ligands, and this interaction induce costimulatory signaling in receptor activator for NF-kB-dependent osteoclastogenesis (Barrow et al. 2011, Schultz et al. 2015).

Surfactant protein D (SP-D) is a member of the collagenous lectins (collectins), which provide a first line of humoral innate immune defense to pathogens at mucosal surfaces. SP-D is mainly produced by alveolar type II epithelial cells, but is also produced outside of the lung, in the gastrointestinal and genital mucosae, salivary glands, prostate, kidney, pancreas, skin, and endothelial cells (Madsen et al. 2000). Polymorphisms in the SP-D-encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. OSCAR binds with SP-D and is localized in an intracellular compartment of alveolar macrophages. This interaction may trigger TNF-alpha production by inflammatory monocytes (Barrow et al. 2015).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
<tr>
<td>2015-05-28</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
</tbody>
</table>

https://reactome.org
LAIR2 binds collagen

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5696357

Type: binding

Compartments: extracellular region

Leukocyte-associated immunoglobulin-like receptor 2 (LAIR2 or CD306) is a soluble homolog of LAIR1 protein, also has high affinity for various collagen molecules and this can interfere with collagen-dependent platelet aggregation and adhesion. LAIR-2 may function as a natural competitor for LAIR-1, thereby regulating its inhibitory potential (Lebbink et al. 2008, Lenting et al. 2010).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
<tr>
<td>2015-05-28</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
</tbody>
</table>
TREM, CD300 binds lipids

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-5696358

Type: binding

Compartments: plasma membrane

The CD300 glycoproteins are a family of related leucocyte surface molecules that modulate a broad and diverse array of immune cell processes via their paired activating and inhibitory receptor functions (Clark et al. 2000, 2001, 2009a,b). Human CD300 family include 7 members and they have a single Ig-V like domain. Only CD300a and CD300f have long cytoplasmic tails with ITIMs (immunoreceptor tyrosine-based inhibitory motif), whereas the rest of the members have a short cytoplasmic tail and a short transmembrane residue and associate with adaptor proteins such as DDNAX associated protein (DAP)12, DAP10, and the Fc receptor gamma (FCRG) (Clark et al 2009a, Borrego 2013). CD300 receptors bind to polar lipids including extracellular ceramide, phosphatidylserine, and phosphatidylethanolamine, that are exposed on the outer leaflet of the plasma membrane of dead and activated cells. The CD300 gene complex has been linked to PSOR2, a susceptibility locus for psoriasis (Speckman et al. 2003, Tomfohrde et al. 1994).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-12</td>
<td>Reviewed</td>
<td>Barrow, AD.</td>
</tr>
<tr>
<td>2015-05-28</td>
<td>Authored, Edited</td>
<td>Garapati, P V.</td>
</tr>
</tbody>
</table>

https://reactome.org
The hallmark of T cell activation is the direct binding of T-cell receptor (TCR) to an antigen that is presented by an antigen-presenting molecule. TCRs are able to recognize as antigens a large variety of molecules including peptides, lipids, and vitamin metabolites (Moody DB et al. 2005; Rossjohn J et al. 2015; de Jong A 2015). While TCR responds to peptides when they are presented by classical major histocompatibility complex (MHC)-encoded class I or II molecules, specific recognition of lipids by TCR occurs when lipid-based antigens form antigenic complexes with CD1 antigen-presenting molecules (Garboczi DN et al. 1996; Beckman EM et al. 1994; De Libero G1 & Mori L 2005; Tatituri RV et al. 2013; Van Rhijn I et al. 2015).

Humans express five functional CD1 isotypes (CD1a-e), with CD1e being the only member that does not directly present antigens to T cells (Calabi F et al. 1989; Balk SP et al. 1989; de la Salle H et al. 2005). CD1a, CD1b, CD1c and CD1d are surface expressed proteins that can be found on the plasma membranes of antigen-presenting cells (APC) (Dougan SK et al. 2007). CD1 ectodomains consist of a heavy chain, which folds into three extracellular domains (alpha1, alpha2 and alpha3) noncovalently associated with beta2-microglobulin (B2M) (Moody DB et al. 2005). Antigen-binding grooves nestle between the alpha1 and alpha2 helices and are mostly lined by hydrophobic residues (Zeng Z et al. 1997). This allows the antigenic lipids to be anchored via their hydrophobic chains, so that polar motifs protrude toward the aqueous milieu (Gadola SD et al. 2002; Zajonc DM et al. 2003, 2005; Batuwangala T et al. 2004; Koch M et al. 2005; Zajonc DM et al. 2005; Scharf L et al. 2010; Garcia-Alles LF et al. 2011). Consequently, polar heads establish stimulatory contacts with TCRs, while variation in the number, length and saturation of alkyl chains may contribute to the binding to varying degrees (Borg NA et al. 2007; Garcia-Alles LF et al. 2011; Li Y et al. 2010; Pei B et al. 2012; Pierce BG et al. 2014). Each of the four CD1 isoforms that directly present antigens to T cells differ in size of the antigen-binding grooves (Zajonc DM et al. 2005; Gadola SD et al. 2002; Zajonc DM et al. 2003, 2005; Batuwangala T et al. 2004; Koch M et al. 2005; Cheng TY et al. 2006; Borg NA et al. 2007; Scharf L et al. 2010; Garcia-Alles LF et al. 2011), intracellular trafficking patterns (Sugita M et al. 1999; Moody DB & Porcelli SA 2003), lipid ligand repertoire (Im JS et al. 2004; Huang S et al. 2011; Ly D & Moody DB 2014), and tissue distribution of expression (Dougan SK et al. 2007). Together with the observation that multiple CD1 isoforms have been maintained throughout mammalian evolution, this argues that each CD1 isoform plays a non-redundant role in the immune system (Dascher CC 2007; de Jong A 2015).

Foreign lipid antigens are extremely diverse chemically and include naturally occurring lipopeptide, glycolipids and phospholipid structures that are distinct from mammalian lipids (Moran A 2009). The best studied lipid antigens of microbial origin are glycolipids derived from the cell envelope of Mycobacteria species (De Libero G et al. 2009). They include CD1b-restricted foreign lipid antigens such as lipoarabinomannan (LAM), lipomannan (LM), phosphatidylinositol mannosides (PIM), mycolic acid, glucose monomycolate (GMM), glycerol monomycolate and diacylated sulpholipids (Sieling PA et al. 1995; Moody DB et al. 2000; Layre E et al. 2009; Gilleron M et al. 2004; Kasmar AG et al. 2011). While most mammalian glycolipids have beta-linked carbohydrates attached to the lipid backbone, bacterial glycolipids typically have alpha-linkage. The structural difference in the linkage may contribute to the highly specific interaction of the TCR with the CD1:lipid antigen complex thus dictating the outcome of the immune response (Scott-Browne JP et al. 2007; Zajonc DM et al. 2005, 2007). In addition, lipopeptides, such as didehydroxymycobactin (DDM), an intermediate in the biosynthesis of the mycobacterial iron scavenger mycobactin siderophores, can be recognized by CD1a-restricted T cells (Moody DB et al. 2004; Zajonc DM et al. 2005). Diacylglycerols, such as the alpha-galactosyldiacylglycerol from the spirochete Borrelia burgdorferi or an alpha-linkage glycosphingolipid (alpha-glucuronosylceramide) found in alphaproteobacteria can be presented by CD1d to stimulate invariant natural killer T (iNKT) cells (Sriram V et al. 2005; Kinjo Y et al. 2006). The ability of T cells to see lipid antigens bound to CD1 proteins enables these lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections or inflammation (Mattner J et al. 2005; Kinjo Y et al. 2005; Chang DH et al. 2008; Cohen NR et al. 2009; de Jong A 2015).

The Reactome event shows foreign lipid-based molecules that have been reported to function as antigens for CD1-restricted T cells (Batuwangala T et al. 2004; Roy S et al. 2014; Garcia-Alles LF et al. 2011; Wang J et al. 2010; Sieling PA et al. 1995; Guiard J et al. 2009; Kasmar AG et al. 2011).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-12-18</td>
<td>Authored</td>
<td>Shamovsky, V.</td>
</tr>
<tr>
<td>2016-02-10</td>
<td>Reviewed</td>
<td>Zajonc, DM., Adams, EJ., Luoma, AM.</td>
</tr>
<tr>
<td>2016-02-22</td>
<td>Edited</td>
<td>Shamovsky, V.</td>
</tr>
</tbody>
</table>
TCR binds self-lipid-based antigen via CD1

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-8850326

Type: binding

Compartments: plasma membrane

T lymphocytes have developed the capacity to recognize as antigens a large variety of molecules including peptides, lipids, and vitamin metabolites (Moody DB et al. 2005; Rossjohn J et al. 2015; de Jong A 2015). Specific recognition of lipids by T-cell receptors (TCR) occurs when these molecules form antigenic complexes using functionally nonpolymorphic CD1 molecules (Beckman EM et al. 1994; De Libero G1 & Mori L 2005; Tatituri RV et al. 2013; Van Rhijn I et al. 2015).

Humans express five functional CD1 isotypes (CD1a-e), with CD1e being the only member that does not directly present antigens to T cells (Calabi F et al. 1989; Balk SP et al. 1989; de la Salle H et al. 2005). CD1a, CD1b, CD1c and CD1d are surface expressed proteins that can be found on the plasma membranes of antigen-presenting cells (APC) (Dougan SK et al. 2007). CD1 ectodomains consist of a heavy chain, which folds into three extracellular domains (alpha1, alpha2 and alpha3) noncovalently associated with beta2-microglobulin (B2M) (Moody DB et al. 2005). Antigen-binding grooves nestle between the alpha1 and alpha2 helices and are mostly lined by hydrophobic residues (Zeng Z et al. 1997). This allows the antigenic lipids to be anchored via their hydrophobic chains, so that polar motifs protrude toward the aqueous milieu (Gadola SD et al. 2002; Zajonc DM et al. 2003, 2005; Batuwangala T et al. 2004; Koch M et al. 2005; Zajonc DM et al. 2005; Scharf L et al. 2010; Garcia-Alles LF et al. 2011). Consequently, polar heads establish stimulatory contacts with TCRs, while variation in the number, length and saturation of alkyl chains may contribute to the binding to varying degrees (Borg NA et al. 2007; Garcia-Alles LF et al. 2011; Li Y et al. 2010; Pierce BG et al. 2014). Each of the four CD1 isoforms that directly present antigens to T cells differ in size of the antigen-binding grooves (Zajonc DM et al. 2005; Gadola SD et al. 2002; Zajonc DM et al. 2003, 2005; Batuwangala T et al. 2004; Koch M et al. 2005; Cheng TY et al. 2006; Borg NA et al. 2007; Scharf L et al. 2010; Garcia-Alles LF et al. 2011), intracellular trafficking patterns (Sugita M et al. 1999; Moody DB & Porcelli SA 2003), lipid ligand repertoire (Im JS et al. 2004; Huang S et al. 2011; Ly D & Moody DB 2014), and tissue distribution of expression (Dougan SK et al. 2007). Together with the observation that multiple CD1 isoforms have been maintained throughout mammalian evolution, this argues that each CD1 isoform plays a non-redundant role in the immune system (Dascher CC 2007; de Jong A 2015).

A large spectrum of self- and foreign lipids associates with members of CD1 family (Mattner J et al. 2005; Kinjo Y et al. 2005; Chang DH et al. 2008; Cohen NR et al. 2009; De Libero G et al. 2009; Zajonc DM & Girardi E 2015; Birkinshaw RW et al. 2015; de Jong A 2015). CD1-bound self-derived lipid antigens, including gangliosides, sulfatide, phosphoglycerolipids and sphingomyelin, can stimulate specialized subsets of T cells though the importance of self-lipid interactions with TCRs can vary (Birkinshaw RW et al. 2015; Borg NA et al. 2007; Luoma AM et al. 2013, 2014; Lepore M et al. 2014; Roy S et al. 2016). The ability of both alphabeta and gammadelta T cells to recognize self lipid loaded CD1 molecules enables these
lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections, inflammation, or malignancies (Brennan PJ et al. 2011; Chang DH et al. 2008; Cohen NR et al. 2009; Luoma et al. 2014; Lepore M et al. 2014; de Jong A 2014, 2015).

The Reactome event shows self lipid-based molecules that have been reported to function as antigens for CD1-restricted T cells (Shamshiev A et al. 2002; Birkinshaw RW et al. 2015; de Jong A 2015).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-12-18</td>
<td>Authored</td>
<td>Shamovsky, V.</td>
</tr>
<tr>
<td>2016-02-10</td>
<td>Reviewed</td>
<td>Zajonc, DM., Adams, EJ., Luoma, AM.</td>
</tr>
<tr>
<td>2016-02-22</td>
<td>Edited</td>
<td>Shamovsky, V.</td>
</tr>
</tbody>
</table>
PILRA binds PIANP, COLLEC12 trimer, NPDC1, CLEC4G

Location: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell

Stable identifier: R-HSA-8862090

Type: binding

Compartments: plasma membrane

Paired immunoglobulin-like type 2 receptor alpha (PILRA) binds to multiple ligands including CD99 (Shiratori et al. 2004), PILR-associating neural protein (PIANP, PANP) (Kogure et al. 2011), Herpes simplex virus-1 glycoprotein B (Satoh et al. 2008), Collectin-12 (COLEC12), Neural proliferation differentiation and control protein 1 (NPDC1) and C-type lectin domain family 4 member G (CLEC4G) (Sun et al. 2012). Binding studies suggest that PILR recognizes a complex ligand domain involving both silica acid and protein motif(s). Thus, PILR is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILR ligands are expressed. The precise function of PILRa-Ligand interaction is not well understood (Sun et al. 2012).

PILRα negatively regulates inflammation and keeps myeloid system in check. Pilra KO mice produce more pathogenic cytokines during inflammation and are prone to enhanced autoimmune arthritis. Correspondingly, anti-PILRa mAb ameliorated inflammation in mouse arthritis models and suppressed the production of proinflammatory cytokines (Sun et al. 2014).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-02-25</td>
<td>Authored</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-01-30</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-01-30</td>
<td>Reviewed</td>
<td>Zarrin, AA.</td>
</tr>
</tbody>
</table>
The paired immunoglobulin-like type 2 receptors (PILR) comprise the inhibitory receptor PILRA and the activating receptor PILRB (Shiratori et al. 2004). The inhibitory PILRA is mainly expressed on macrophages, dendritic cells and granulocytes, whereas the activating PILRB is mainly on activated NK cells. Both recognize mouse CD99 as a ligand, but the binding affinity of PILRB is much lower (Tabata et al. 2008). Mouse NK cells expressing PILRB mediate cytotoxicity against CD99-positive target cells, suggesting that this receptor may be involved in NK cell recognition (Shiratori et al. 2004).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-02-25</td>
<td>Authored</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-01-30</td>
<td>Edited</td>
<td>Jupe, S.</td>
</tr>
<tr>
<td>2017-01-30</td>
<td>Reviewed</td>
<td>Zarrín, AA.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction

- Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
 - VCAM1 binds Integrin alpha4beta1
 - TCR complex interacts with peptide antigen-presenting MHC Class I
 - KIR2DL2/3 interacting with HLA-C group 1 (Cw4)
 - NKG2D homodimer interacting with ligands
 - CD96 binds PVR
 - MADCAM1-1 binds Integrin alpha4beta7
 - LILRs interact with MHC Class I
 - Ligands bind L-selectin
 - ICAM1-5 bind Integrin alphaLbeta2 (LFA-1)
 - KLRC1:KLRD1 heterodimer interacts with HLA-E
 - Epithelial cadherin binds to KLRG1
 - CRTAM binds to NECL2
 - PVR binds CD226
 - Nectin 2 binds CD226
 - CD200 binds to CD200R
 - MHC Class I interacts with CD160
 - Fc gamma receptors interact with antigen-bound IgG
 - CD40L binds CD40
 - CXADR binds to AMICA1
 - C3d-complexed antigen binds to complement receptor
 - KIR2DL1 interacting with HLA-C group 2 (Cw3)
 - KIR3DL1 interacting with HLA Bw4
 - KIR3DL2 interacting with HLA-A3
 - KIR2DL4 interacting with HLA-G
 - KIR2DS1 interacting with HLA-C group 2 (Cw4)
 - KIR2DS2 interacting with HLA-C group 1 (Cw3)
 - CLEC2D binds KLRB1
 - Sialic acid binds SIGLEC
 - viral HA binds NCRI
 - NCR3LG1 binds NCR3
 - CMVPP65 binds NCR3
 - CLEC2B binds KLRF1 dimer

https://reactome.org
<table>
<thead>
<tr>
<th>No.</th>
<th>Protein Interaction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>SLAMF6 binds SLAMF6</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SAP and EAT2 binds SLAMF6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>SLAMF7 binds SLAMF7</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>LAIR1 binds collagen</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>OSCAR binds collagen and SP-D</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>LAIR2 binds collagen</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>TREM, CD300 binds lipids</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>TCR binds microbial lipid-based antigen via CD1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>TCR binds self-lipid-based antigen via CD1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PILRA binds PIANP, COLLEC12 trimer, NPDC1, CLEC4G</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>PILRA, PILRB bind CD99</td>
<td></td>
</tr>
</tbody>
</table>

Table of Contents