Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 72

This document contains 1 pathway and 5 reactions (see Table of Contents)
Vitamin B2 (riboflavin) metabolism

Stable identifier: R-HSA-196843

Riboflavin (vitamin B2, E101) is an essential component for the cofactors FAD (flavin-adenine dinucleotide) and FMN (flavin mononucleotide). Together with NAD+ and NADP+, FAD and FMN are important hydrogen carriers and take part in more than 100 redox reactions involved in energy metabolism. Riboflavin is present in many vegetables and meat and during digestion, various flavoproteins from food are degraded and riboflavin is resorbed. The major degradation and excretion product in humans is riboflavin (Rivlin 1970).

Literature references

SLC52A1,2,3 transport RIB from extracellular region to cytosol

Location: Vitamin B2 (riboflavin) metabolism

Stable identifier: R-HSA-3165230