Vitamin C (ascorbate) metabolism

D'Eustachio, P., Jassal, B., Stephan, R.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 76

This document contains 1 pathway and 9 reactions (see Table of Contents)
Vitamin C (ascorbate) is an antioxidant and a cofactor in reactions catalyzed by Cu+-dependent monooxygenases and Fe++-dependent dioxygenases. Many mammals can synthesize ascorbate de novo; humans and other primates cannot due to an evolutionarily recent mutation in the gene catalyzing the last step of the biosynthetic pathway. Reactions annotated here mediate the uptake of ascorbate and its fully oxidized form, dehydroascorbate (DHA) by cells, and the reduction of DHA and monodehydroascorbate to regenerate ascorbate (Linster and Van Schaftingen 2007).

Literature references

Editions

2007-04-24 Authored Jassal, B.
SLC2A1,3 transports DeHA from extracellular region to cytosol

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-198818

Type: transition

Compartments: plasma membrane

The uptake of extracellular dehydroascorbate (DeHA) into the cytosol is mediated by GLUT1 and GLUT3 (encoded by SLC2A1 and SLCA3 respectively) associated with the plasma membrane (Rumsey et al. 1997, 2000). This process may play a significant role in ascorbate utilization in the central nervous system (Agus et al. 1997). The process is efficiently competitively inhibited by glucose, leading to the suggestion that inhibited dehydroascorbate uptake may contribute to the pathology of diabetes (Liang et al. 2001, Rumsey et al. 2000).

Followed by: DeHA hydrolyses to 2,3-DKG, GSTO dimers reduce DeHA to AscH-, DeHA hydrolyses to threonate and oxalate

Literature references

Editions

2007-07-05 Authored D'Eustachio, P.
SLC23A1,2 cotransports AscH-, 2Na+ from extracellular region to cytosol

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-198870

Type: transition

Compartments: plasma membrane

The plasma membrane-associated transport proteins SVCT1 and SVCT2 (encoded by SLC23A1 and SLC23A2 respectively) are each capable of mediating the uptake of one molecule of ascorbate (AscH-) and two sodium ions from the extracellular space to the cytosol (Daruwala et al. 1999, Rajan et al. 1999, Wang et al. 1999). In the body SVCT2 is expressed in most tissues, while SVCT1 is largely confined to epithelial cells (Liang et al. 2001). SVCT2 may mediate fetal uptake of ascorbate from the maternal circulation (Rajan et al. 1999). The transporters responsible for its uptake from the small intestine and for its release from enterocytes into the circulation have not been identified, although both SVCT1 and 2 are expressed in intestinal cells.

Literature references

Editions

2007-07-05 Authored D'Eustachio, P.
Asc.- radical dissociates to AscH- and DeHA

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-9640302

Type: transition

Compartments: cytosol

The ascorbate radical (Asc.-) easily donates an electron, forming a stable radical which dissociates into ascorbate (AscH-), the dominant form at physiological pH, and dehydroascorbate (DeHA). This reaction is the basis for its antioxidant properties (Du et al. 2013).

Followed by: DeHA hydrolyses to threonate and oxalate, DeHA hydrolyses to 2,3-DKG

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-03-25</td>
<td>Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2019-03-25</td>
<td>Authored</td>
<td>Stephan, R.</td>
</tr>
<tr>
<td>2019-04-03</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
DeHA hydrolyses to 2,3-DKG

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-9640307

Type: transition

Compartments: cytosol

If peroxide is not present, dehydroascorbate (DeHA) quickly hydrolyses to 2,3-diketogulonate (2,3-DKG) (Simpson & Ortwerth 2000).

Preceded by: SLC2A1,3 transports DeHA from extracellular region to cytosol, Asc.- radical dissociates to AscH- and DeHA

Followed by: 2,3-DKG hydrolyses to ERU and oxalate

Literature references
2,3-DKG hydrolyses to ERU and oxalate

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-9640321

Type: transition

Compartments: cytosol

2,3-Diketogulonate (2,3-DKG) further hydrolyses into erythrulose (ERU) and oxalate (Simpson & Ortwerth 2000).

Preceded by: DeHA hydrolyses to 2,3-DKG

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-03-25</td>
<td>Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2019-03-25</td>
<td>Authored</td>
<td>Stephan, R.</td>
</tr>
<tr>
<td>2019-04-03</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
DeHA hydrolyses to threonate and oxalate

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-9640316

Type: transition

Compartments: cytosol

Ascorbate can autoxidise, generating superoxide and its dismutation product H2O2. The resulting dehydroascorbate (DeHA) gets oxidised by H2O2 and hydrolyses to threonate and oxalate (Simpson & Ortwerth 2000).

Preceded by: Asc.- radical dissociates to AscH- and DeHA, SLC2A1,3 transports DeHA from extracellular region to cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-03-25</td>
<td>Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2019-03-25</td>
<td>Authored</td>
<td>Stephan, R.</td>
</tr>
<tr>
<td>2019-04-03</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
CYB5A:heme reduces Asc.- to AscH-

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-198845

Type: transition

Compartments: cytosol, mitochondrial outer membrane

The reduction of cytosolic semidehydroascorbate (SDA) to ascorbate (AscH-) is catalyzed by cytochrome B5 (CYB5A) associated with the mitochondrial outer membrane. In the course of the reaction, the heme iron of the cytochrome is oxidized (Linster & Van Schaftingen 2007, Shirabe et al. 1995).

Preceded by: CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme

Followed by: CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme

Literature references

Editions

2007-07-05 Authored D'Eustachio, P.
CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-198824

Type: transition

Compartments: cytosol, mitochondrial outer membrane

Cytochrome b5 reductase (CYB5R3) catalyzes the reduction of cytosolic ferric CYB5A (CYB5A:ferriheme) to ferrous CYPB5A (CYB5A:heme), coupled to the conversion of NADH to NAD+ (Shirabe et al. 1995). CYB5R3 is associated with the outer mitochondrial membrane via a myristoyl group added post-translationally to glycine residue 2 of the protein (Borgese et al. 1993).

Preceded by: CYB5A:heme reduces Asc.- to AscH-

Followed by: CYB5A:heme reduces Asc.- to AscH-

Literature references

Editions

2007-07-05 Authored D'Eustachio, P.
GSTO dimers reduce DeHA to Asch-

Location: Vitamin C (ascorbate) metabolism

Stable identifier: R-HSA-198813

Type: transition

Compartments: cytosol

Cytosolic omega class glutathione transferases (GSTO1 and GSTO2) catalyze the reaction of dehydroascorbate (DeHA) and glutathione (GSH) to form ascorbate (Asch-) and oxidized glutathione (GSSG). The GSTO enzymes occur as homodimers (Board et al. 2000), and while both have dehydroascorbate reductase activity in vitro, that of GSTO2 is much greater than that of GSTO1 (Schmuck et al. 2005). Polymorphisms affecting the activities of the two enzymes have been described (Whitbread et al. 2005).

Preceded by: SLC2A1,3 transports DeHA from extracellular region to cytosol

Literature references

Editions

2007-07-05 Authored D'Eustachio, P.
Table of Contents

Introduction 1

1. Vitamin C (ascorbate) metabolism 2
 - SLC2A1,3 transports DeHA from extracellular region to cytosol 3
 - SLC23A1,2 cotransports AscH-, 2Na+ from extracellular region to cytosol 4
 - Asc.- radical dissociates to AscH- and DeHA 5
 - DeHA hydrolyses to 2,3-DKG 6
 - 2,3-DKG hydrolyses to ERU and oxalate 7
 - DeHA hydrolyses to threonate and oxalate 8
 - CYB5A:heme reduces Asc.- to AscH- 9
 - CYB5R3:FAD reduces CYB5A:ferriheme to CYB5A:heme 10
 - GSTO dimers reduce DeHA to AscH- 11

Table of Contents 12