Signaling by FGFR

D'Eustachio, P., Gotoh, N., Grose, RP., Mohammadi, M., de Bono, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

24/09/2021
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 77

This document contains 5 pathways (see Table of Contents)
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. These receptors are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. An alternative, FGF-independent, source of FGFR activation originates from the interaction with cell adhesion molecules, typically in the context of interactions on neural cell membranes and is crucial for neuronal survival and development.

Upon ligand binding, receptor dimers are formed and their intrinsic tyrosine kinase is activated causing phosphorylation of multiple tyrosine residues on the receptors. These then serve as docking sites for the recruitment of SH2 (src homology-2) or PTB (phosphotyrosine binding) domains of adaptors, docking proteins or signaling enzymes. Signaling complexes are assembled and recruited to the active receptors resulting in a cascade of phosphorylation events.

This leads to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape, depending on the cell type or stage of maturation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-01-10</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-02-07</td>
<td>Reviewed</td>
<td>Mohammadi, M.</td>
</tr>
<tr>
<td>2007-02-11</td>
<td>Edited</td>
<td>de Bono, B., D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>Reviewed</td>
<td>Gotoh, N.</td>
</tr>
</tbody>
</table>
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. These receptors are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. An alternative, FGF-independent, source of FGFR activation originates from the interaction with cell adhesion molecules, typically in the context of interactions on neural cell membranes and is crucial for neuronal survival and development.

Upon ligand binding, receptor dimers are formed and their intrinsic tyrosine kinase is activated causing phosphorylation of multiple tyrosine residues on the receptors. These then serve as docking sites for the recruitment of SH2 (src homology-2) or PTB (phosphotyrosine binding) domains of adaptors, docking proteins or signaling enzymes. Signaling complexes are assembled and recruited to the active receptors resulting in a cascade of phosphorylation events.

This leads to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape, depending on the cell type or stage of maturation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-01-10</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-02-07</td>
<td>Reviewed</td>
<td>Mohammadi, M.</td>
</tr>
<tr>
<td>2007-02-11</td>
<td>Edited</td>
<td>de Bono, B., D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>Reviewed</td>
<td>Gotoh, N.</td>
</tr>
<tr>
<td>2016-01-25</td>
<td>Reviewed</td>
<td>Grose, RP.</td>
</tr>
</tbody>
</table>
Signaling by FGFR2

Location: Signaling by FGFR

Stable identifier: R-HSA-5654738

The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. These receptors are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. An alternative, FGF-independent, source of FGFR activation originates from the interaction with cell adhesion molecules, typically in the context of interactions on neural cell membranes and is crucial for neuronal survival and development.

Upon ligand binding, receptor dimers are formed and their intrinsic tyrosine kinase is activated causing phosphorylation of multiple tyrosine residues on the receptors. These then serve as docking sites for the recruitment of SH2 (src homology-2) or PTB (phosphotyrosine binding) domains of adaptors, docking proteins or signaling enzymes. Signaling complexes are assembled and recruited to the active receptors resulting in a cascade of phosphorylation events.

This leads to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape, depending on the cell type or stage of maturation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-01-10</td>
<td>Authored</td>
<td>de Bono, B.</td>
</tr>
<tr>
<td>2007-02-07</td>
<td>Reviewed</td>
<td>Mohammadi, M.</td>
</tr>
<tr>
<td>2007-02-11</td>
<td>Edited</td>
<td>de Bono, B., D'Eustachio, P.</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>Reviewed</td>
<td>Gotoh, N.</td>
</tr>
</tbody>
</table>

https://reactome.org
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. These receptors are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. An alternative, FGF-independent, source of FGFR activation originates from the interaction with cell adhesion molecules, typically in the context of interactions on neural cell membranes and is crucial for neuronal survival and development.

Upon ligand binding, receptor dimers are formed and their intrinsic tyrosine kinase is activated causing phosphorylation of multiple tyrosine residues on the receptors. These then serve as docking sites for the recruitment of SH2 (src homology-2) or PTB (phosphotyrosine binding) domains of adaptors, docking proteins or signaling enzymes. Signaling complexes are assembled and recruited to the active receptors resulting in a cascade of phosphorylation events.

This leads to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape, depending on the cell type or stage of maturation.

Literature references

The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. These receptors are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. An alternative, FGF-independent, source of FGFR activation originates from the interaction with cell adhesion molecules, typically in the context of interactions on neural cell membranes and is crucial for neuronal survival and development.

Upon ligand binding, receptor dimers are formed and their intrinsic tyrosine kinase is activated causing phosphorylation of multiple tyrosine residues on the receptors. These then serve as docking sites for the recruitment of SH2 (src homology-2) or PTB (phosphotyrosine binding) domains of adaptors, docking proteins or signaling enzymes. Signaling complexes are assembled and recruited to the active receptors resulting in a cascade of phosphorylation events.

This leads to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape, depending on the cell type or stage of maturation.

Literature references

Table of Contents

Introduction ... 1

- Signaling by FGFR 2
 - Signaling by FGFR1 4
 - Signaling by FGFR2 6
 - Signaling by FGFR3 7
 - Signaling by FGFR4 8

Table of Contents 9