Digestion of dietary carbohydrate

Amiri, M., D'Eustachio, P., Jassal, B., Naim, HY., Nichols, BL.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

24/03/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 79

This document contains 1 pathway and 13 reactions (see Table of Contents)
Carbohydrate is a major component of the human diet, and includes starch (amylose and amyllopectin) and disaccharides such as sucrose, lactose, maltose and, in small amounts, trehalose. The digestion of starch begins with the action of amylase enzymes secreted in the saliva and small intestine, which convert it to maltotriose, maltose, limit dextrins, and some glucose. Digestion of the limit dextrins and disaccharides, both dietary and starch-derived, to monosaccharides - glucose, galactose, and fructose - is accomplished by enzymes located on the luminal surfaces of enterocytes lining the microvilli of the small intestine (Van Beers et al. 1995).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-11-03</td>
<td>Authored</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2007-01-16</td>
<td>Reviewed</td>
<td>Nichols, BL.</td>
</tr>
<tr>
<td>2007-01-18</td>
<td>Revised</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
Digestion of linear starch (amylose) by extracellular amylase

Location: Digestion of dietary carbohydrate

Stable identifier: R-HSA-188979