Synthesis of IP2, IP, and Ins in the cytosol

D'Eustachio, P., Jassal, B., Orlic-Milacic, M., Rush, MG., Williams, MG., Wundenberg, T.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

16/11/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 1 pathway and 14 reactions (see Table of Contents)
Inositol phosphates IP2, IP and the six-carbon cyclic alcohol inositol (Ins) are produced by various phosphatases and the inositol-3-phosphate synthase 1 (ISYNA1) (Ju et al. 2004, Ohnishi et al. 2007, Irvine & Schell 2001, Bunney & Katan 2010).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
<tr>
<td>2017-02-24</td>
<td>Revised</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
I(1,4,5)P3 is dephosphorylated to I(1,4)P2 by INPP5(4) in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855174

Type: transition

Compartments: cytosol

A group of inositol phosphatases dephosphorylate inositol 1,4,5-trisphosphate (I(1,4,5)P3) to inositol 1,4-bisphosphate (I(1,4)P2). The group of inositol phosphatases involved are: inositol polyphosphate 5-phosphatase OCRL-1 (OCRL), phosphatidylinositol 4,5-bisphosphate 5-phosphatase A (INPP5J), and synaptic inositol-1,4,5-trisphosphate 5-phosphatase 1 (SYNJ1).

The following lists the above proteins with their corresponding literature references: OCRL (Zhang et al. 1995, Zhang et al. 1998, Schmid et al. 2004); INPP5J (Mochizuki & Thompson 1999); SYNJ1 (Schmid et al. 2004).

Followed by: I(1,4)P2 is dephosphorylated to I4P by INPP1 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
<th>Edition Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I(1,4,5)P3 is dephosphorylated to I(1,4)P2 by INPP5A/B at the plasma membrane

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855222

Type: transition

Compartments: plasma membrane, cytosol

Type I inositol-1,4,5-trisphosphate 5-phosphatase (INPP5A) and the Type II phosphatase (INPP5B) are isoprenylated to the plasma membrane and act as a lipid anchor. Here they dephosphorylate inositol 1,4,5-trisphosphate (I(1,4,5)P3) to inositol 1,4-bisphosphate I(1,4)P2.

The following lists the above proteins with their corresponding literature references: INPP5A (Laxminarayan et al. 1994); INPP5B (Jefferson & Majerus 1995, Ross et al. 1991, Schmid et al. 2004).

Followed by: I(1,4)P2 is dephosphorylated to I4P by INPP1 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I(1,4)P2 is dephosphorylated to I4P by INPP1 in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855208

Type: transition

Compartments: cytosol

Inositol polyphosphate 1-phosphatase (INPP1) dephosphorylates inositol 1,4-bisphosphate (I(1,4)P2) to inositol 4-phosphate (I4P) (York et al. 1993).

Preceded by: I(1,4,5)P3 is dephosphorylated to I(1,4)P2 by INPP5A/B at the plasma membrane, I(1,4,5)P3 is dephosphorylated to I(1,4)P2 by INPP5(4) in the cytosol

Followed by: I4P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I4P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855211

Type: transition

Compartments: cytosol

Inositol monophosphatase 1 (IMPA1) and 2 (IMPA2) homodimers dephosphorylate inositol 4-phosphate (I4P) to inositol (Ins). In vitro, IMPA1 and 2 differ in their pH optima and IMPA1 has a significantly greater activity on IP4 than does IMPA2 (Ohnishi et al. 2007).

Preceded by: I(1,4)P2 is dephosphorylated to I4P by INPP1 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I1P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855154

Type: transition

Compartments: cytosol

Inositol monophosphatase 1 (IMPA1) and 2 (IMPA2) homodimers dephosphorylate inositol 1-phosphate (I1P) to inositol (Ins). In vitro, IMPA1 and 2 differ in their pH optima and IMPA1 has a significantly greater activity on IP4 than does IMPA2 (McAllister et al. 1992, Ohnishi et al. 2007).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I(1,3,4)P3 is dephosphorylated to I(1,3)P2 by INPP4A/B in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855180

Type: transition

Compartments: cytosol

Type I (INPP4A) and type II inositol-3,4-bisphosphate 4-phosphatase (INPP4B) dephosphorylate inositol 1,3,4-trisphosphate (I(1,3,4)P3) to inositol 1,3-bisphosphate (I(1,3)P2) (Norris et al. 1995, Norris et al. 1997).

Literature references

Atkins, RC., Majerus, PW., Norris, FA. (1997). The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J Biol Chem, 272, 23859-64.

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I(1,3,4)P3 is dephosphorylated to I(3,4)P2 by INPP1 in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855232

Type: transition

Compartments: cytosol

Inositol polyphosphate 1-phosphatase (INPP1) dephosphorylates inositol 1,3,4-trisphosphate (I(1,3,4)P3) to inositol 3,4-bisphosphate (I(3,4)P2) (York et al. 1993).

Followed by: I(3,4)P2 is dephosphorylated to I3P by INPP4A/B in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
I(3,4)P2 is dephosphorylated to I3P by INPP4A/B in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855202

Type: transition

Compartments: cytosol

Type I (INPP4A) and type II inositol-3,4-bisphosphate 4-phosphatase (INPP4B) dephosphorylate inositol 3,4-bisphosphate (I(3,4)P2) to inositol 3-phosphate (I3P) (Norris et al. 1995, Norris et al. 1997).

Preceded by: I(1,3,4)P3 is dephosphorylated to I(3,4)P2 by INPP1 in the cytosol

Followed by: I3P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>

https://reactome.org
Inositol-3-phosphate synthase 1 (ISYNA1) aka hIPS isomerises glucose 6-phosphate (Glc6P) to inositol 3-phosphate (I3P) (Ju et al. 2004).

Followed by: I3P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>

https://reactome.org
I3P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-1855210

Type: transition

Compartments: cytosol

Inositol monophosphatase 1 (IMPA1) and 2 (IMPA2) homodimers dephosphorylate inositol 3-phosphate (I3P) to inositol (Ins). In vitro, IMPA1 and 2 differ in their pH optima and IMPA1 has a significantly greater activity on IP4 than does IMPA2 (Ohnishi et al. 2007).

Preceded by: I(3,4)P2 is dephosphorylated to I3P by INPP4A/B in the cytosol, Glc6P is isomerised to I3P by ISYNA1 in the cytosol

Followed by: MIOX oxidises Ins to GlcA

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-10-28</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-11-07</td>
<td>Reviewed</td>
<td>Wundenberg, T.</td>
</tr>
</tbody>
</table>
Inositol oxidase (MIOX) catalyses the oxidation of inositol (Ins) to glucuronic acid (GlcA). MIOX binds two Fe2+ ions as cofactor (Arner et al. 2004, Thorsell et al. 2008).

Preceded by: I3P is dephosphorylated to Ins by IMPA1/2 in the cytosol

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-02-23</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2017-01-11</td>
<td>Reviewed</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>

https://reactome.org
I(1,3)P2 is dephosphorylated into I1P by MTMR7

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-6809561

Type: transition

Compartments: cytosol

Inferred from: I(1,3)P2 is dephosphorylated into I1P by Mtmr7 (Mus musculus)

MTMR7 dephosphorylates inositol-1,3-bisphosphate, I(1,3)P2, acting as an inositol-1,3-bisphosphate 3-phosphatase (Mochizuki and Majerus 2003).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11-13</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2017-01-10</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
<tr>
<td>2017-01-25</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
MTMR7 binds MTMR9

Location: Synthesis of IP₂, IP, and Ins in the cytosol

Stable identifier: R-HSA-6809238

Type: binding

Compartments: cytosol

Inferred from: Mtmr7 binds Mtmr9 (Mus musculus)

MTMR7 binds to MTMR9, an enzymatically inactive myotubularin family member, which results in increased enzymatic activity of MTMR7. Almost all MTMR7 in the cell is present in the complex with MTMR9 (Mochizuki and Majerus 2003).

Followed by: I(1,3)P₂ is dephosphorylated into I1P by MTMR7:MTMR9

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11-13</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2017-01-10</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
<tr>
<td>2017-01-25</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
I(1,3)P2 is dephosphorylated into I1P by MTMR7:MTMR9

Location: Synthesis of IP2, IP, and Ins in the cytosol

Stable identifier: R-HSA-6809565

Type: transition

Compartments: cytosol

Inferred from: I(1,3)P2 is dephosphorylated into I1P by Mtmr7:Mtmr9 (Mus musculus)

Formation of a complex with MTMR9 results in 2- to 5-fold increase in MTMR7 inositol-1,3-bisphosphate 3-phosphatase catalytic activity (Mochizuki and Majerus 2003).

Preceded by: MTMR7 binds MTMR9

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11-13</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2017-01-10</td>
<td>Reviewed</td>
<td>Rush, MG.</td>
</tr>
<tr>
<td>2017-01-25</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

Synthesis of IP2, IP, and Ins in the cytosol 2

- I(1,4,5)P3 is dephosphorylated to I(1,4)P2 by INPP5(4) in the cytosol 3
- I(1,4,5)P3 is dephosphorylated to I(1,4)P2 by INPP5A/B at the plasma membrane 4
- I(1,4)P2 is dephosphorylated to I4P by INPP1 in the cytosol 5
- I4P is dephosphorylated to Ins by IMPA1/2 in the cytosol 6
- I1P is dephosphorylated to Ins by IMPA1/2 in the cytosol 7
- I(1,3,4)P3 is dephosphorylated to I(1,3)P2 by INPP4A/B in the cytosol 8
- I(1,3,4)P3 is dephosphorylated to I(3,4)P2 by INPP1 in the cytosol 9
- I(3,4)P2 is dephosphorylated to I3P by INPP4A/B in the cytosol 10
- Glc6P is isomerised to I3P by ISYNA1 in the cytosol 11
- I3P is dephosphorylated to Ins by IMPA1/2 in the cytosol 12
- MIOX oxidises Ins to GlcA 13
- I(1,3)P2 is dephosphorylated into I1P by MTMR7 14
- MTMR7 binds MTMR9 15
- I(1,3)P2 is dephosphorylated into I1P by MTMR7:MTMR9 16

Table of Contents 17