Vif-mediated degradation of APOBEC3G

Matthews, L., Mulder, L., Simon, V.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

30/07/2020
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 73

This document contains 1 pathway and 4 reactions ([see Table of Contents](https://reactome.org))
The HIV-1 accessory protein Vif (Viral infectivity factor) is required for the efficient infection of primary cell populations (e.g., lymphocytes and macrophages) and 'non-permissive' cell lines. Vif neutralises the host DNA editing enzyme, APOBEC3G, in the producer cell. Indeed, in the absence of a functional Vif, APOBEC3G is selectively incorporated into the budding virions and in the next cycle of infection leads to the deamination of deoxycytidines (dC) within the minus-strand cDNA during reverse transcription (Sheehy et al. 2003; Li et al., 2005; Stopak et al. 2003).

Deamination changes cytidine to uracil and thus results in G to A transitions and stop codons in the provirus. The aberrant cDNAs produced in the infected cell can either be integrated in form of non-functional proviruses or degraded. Vif counteracts the antiviral activity of APOBEC3G by associating directly with it and promoting its polyubiquitination and degradation by the 26S proteasome.

Vif binds APOBEC3G and recruits it into an E3 ubiquitin-enzyme complex composed by the cytoplasmic proteins Cullin5, Rbx, ElonginC and ElonginB (Yu et al., 2003). Thus, in the presence of Vif, APOBEC3G incorporation into the virion is minimal.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-05-16</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-30</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-31</td>
<td>Reviewed</td>
<td>Simon, V., Mulder, L.</td>
</tr>
</tbody>
</table>
The HIV-1 Vif protein associates with the DNA editing enzyme APOBEC3G Marin et al. The binding site has not yet been mapped but emerging evidence suggest that the N-terminal region of Vif is essential for APOBEC3G recognition (Tian et al).

Substitution of a single amino acid in the human APOBEC3G (Asp128Lys) abolishes binding and renders it resistant to HIV-1 Vif (Schrofelbauer et al; Bogerd et al.).

Followed by: Association of APOBEC3G:Vif with the Cul5-SCF complex

Literature references

Association of APOBEC3G:Vif with the Cul5-SCF complex

Location: Vif-mediated degradation of APOBEC3G

Stable identifier: R-HSA-180555

Type: binding

Compartments: cytosol

Diseases: Human immunodeficiency virus infectious disease

The interaction between Vif and the E3 ubiquitin ligase complex (Cullin5, Elongin B and Elongin C, and Rbx1) takes place through direct binding of the SOCS box motif in the viral protein Vif to the host protein Elongin C. Moreover, a conserved HCCH motif in Vif allows binding to Cullin 5.

Preceded by: Association of Vif with APOBEC3G

Followed by: Multi-ubiquitination of APOBEC3G

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-05-16</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-30</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-31</td>
<td>Reviewed</td>
<td>Simon, V., Mulder, L.</td>
</tr>
</tbody>
</table>
Multi-ubiquitination of APOBEC3G

Location: Vif-mediated degradation of APOBEC3G

Stable identifier: R-HSA-180540

Type: transition

Compartments: cytosol

Diseases: Human immunodeficiency virus infectious disease

APOBEC3G is multi-ubiquitinated by the Vif-Cul5-SCF complex.

Preceded by: Association of APOBEC3G:Vif with the Cul5-SCF complex

Followed by: Proteosome-mediated degradation of APOBEC3G

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-05-16</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-30</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-31</td>
<td>Reviewed</td>
<td>Simon, V., Mulder, L.</td>
</tr>
</tbody>
</table>
Proteosome-mediated degradation of APOBEC3G

Location: Vif-mediated degradation of APOBEC3G

Stable identifier: R-HSA-180603

Type: omitted

Compartments: cytosol

Diseases: Human immunodeficiency virus infectious disease

Following multi-ubiquitination by the Vif-Cul5-SCF complex, APOBEC3G is degraded by the 26S proteasome.

Preceded by: Multi-ubiquitination of APOBEC3G

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-05-16</td>
<td>Authored</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-30</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2007-01-31</td>
<td>Reviewed</td>
<td>Simon, V., Mulder, L.</td>
</tr>
</tbody>
</table>
Table of Contents

- Introduction ... 1
 - Vif-mediated degradation of APOBEC3G 2
 - Association of Vif with APOBEC3G 4
 - Association of APOBEC3G:Vif with the Cul5-SCF complex .. 5
 - Multi-ubiquitination of APOBEC3G 6
 - Proteosome-mediated degradation of APOBEC3G 7

Table of Contents ... 8