Gamma-carboxylation of protein precursors

D'Eustachio, P., Jassal, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

04/06/2020
Introduction

Reactome is an open-source, open-access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 72

This document contains 1 pathway and 9 reactions (see Table of Contents)
Gamma-carboxylation of a cluster of glutamate residues near the amino termini of thrombin, factor VII, factor IX, factor X, protein C, protein S, protein Z, and Gas 6 is required for these proteins to bind Ca++ and function efficiently in blood clotting. A single enzyme, vitamin K-dependent gamma-carboxylase, catalyzes the gamma-carboxylation of all eight proteins involved in clotting (Morris et al. 1995; Brenner et al. 1998; Spronk et al. 2000). In the carboxylation reaction, the enzyme binds its substrate protein via a sequence motif on the amino terminal side of the glutamate residues to be carboxylated (Furie et al. 1999), then processively carboxylates all glutamates in the cluster before releasing the substrate (Morris et al. 1995; Berkner 2000; Stenina et al. 2001). The reaction occurs in the endoplasmic reticulum (Bristol et al. 1996).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-03-17</td>
<td>Authored</td>
<td>D'Eustachio, P.</td>
</tr>
<tr>
<td>2020-02-28</td>
<td>Edited</td>
<td>D'Eustachio, P.</td>
</tr>
</tbody>
</table>
GGCX gamma-carboxylates 3D-F9(29-461) (pro-factor IX)

Location: Gamma-carboxylation of protein precursors

Stable identifier: R-HSA-159803