Hydrolysis of LPC

D'Eustachio, P., Jassal, B., Wakelam, M., Williams, MG.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

21/02/2020
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 71

This document contains 1 pathway and 6 reactions (see Table of Contents)
Lysophosphatidylcholine (LPC) is hydrolyzed by phospholipases to produce glycerophosphocholine (GPCho) which is in turn hydrolyzed by glycerophosphocholine phosphodiesterase to produce choline (Cho) and glycerol-3-phosphate (G3P) (Yamashita et al. 2009, Yamashita et al. 2005, Ghomashchi et al. 2010).

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-12</td>
<td>Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2011-09-14</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2012-05-14</td>
<td>Reviewed</td>
<td>Wakelam, M.</td>
</tr>
</tbody>
</table>
1-acyl LPC is hydrolyzed to GPCho by PLA2[8]↗

Location: Hydrolysis of LPC

Stable identifier: R-HSA-1482685

Type: transition

Compartments: endoplasmic reticulum membrane, cytosol

At the endoplasmic reticulum (ER) membrane, 1-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G4A/B/D/E/F) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009, Sharp et al. 1994) or by Phospholipase B1-like (PLBD1) (Xu et al. 2009). PLBD1 also acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.

Followed by: GPCho is hydrolyzed to Cho and G3P by GPCPD1

Literature references

<table>
<thead>
<tr>
<th>Editions</th>
<th>Edited</th>
<th>Authored</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-12</td>
<td></td>
<td></td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2011-09-14</td>
<td></td>
<td></td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>
1-acyl LPC is hydrolyzed to GPCho by PLA2G4C

Location: Hydrolysis of LPC

Stable identifier: R-HSA-1482696

Type: transition

Compartments: endoplasmic reticulum membrane, cytosol

At the endoplasmic reticulum (ER) membrane, 1-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by membrane-bound cytosolic phospholipase A2 gamma (PLA2G4C) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009).

Followed by: GPCho is hydrolyzed to Cho and G3P by GPCPD1

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-12</td>
<td>Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2011-09-14</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>
At the endoplasmic reticulum (ER) membrane, 2-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by cytosolic phospholipase A2 alpha/beta/delta/epsilon/zeta (PLA2G4A/B/D/E/F) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009, Sharp et al. 1994) or by Phospholipase B1-like (PLBD1) (Xu et al. 2009). PLBD1 also acts as a phospholipase A2 but in addition has the propensity to hydrolyze the lysophospholipid formed in its initial reaction.

Followed by: GPCho is hydrolyzed to Cho and G3P by GPCPD1

Literature references

<table>
<thead>
<tr>
<th>Editions</th>
<th>Edited by</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-12</td>
<td>Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2011-09-14</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>

https://reactome.org
2-acyl LPC is hydrolyzed to GPCho by PLA2G4C

Location: Hydrolysis of LPC

Stable identifier: R-HSA-1482629

Type: transition

Compartments: endoplasmic reticulum membrane, cytosol

At the endoplasmic reticulum (ER) membrane, 2-acyl lysophosphatidylcholine (LPC) is hydrolyzed to glycerophosphocholine (GPCho) by membrane-bound cytosolic phospholipase A2 gamma (PLA2G4C) (Yamashita et al. 2005, Ghomashchi et al. 2010, Yamashita et al. 2009).

Followed by: GPCho is hydrolyzed to Cho and G3P by GPCPD1

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-12</td>
<td>Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2011-09-14</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>
PLA2G15 hydrolyses LPC to GPCho and LCFA(-)

Location: Hydrolysis of LPC

Stable identifier: R-HSA-8952251

Type: transition

Compartments: extracellular region

Lecithin cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of plasma cholesterol. Group XV phospholipase A2 (PLA2G15 aka LCAT-like lyso phospholipase, LLPL or lysosomal phospholipase A2, LPLA2) bears 49% sequence similarity to LCAT (Taniyama et al. 1999) and is present in plasma. PLA2G15 possesses both calcium-independent phospholipase A(2) and transacylase activities (Abe & Shayman 1998) and could hydrolyse lysophosphatidylcholine (lysoPC), a proatherogenic lipid, to glycerophosphorylcholine (GPCho) and a free fatty acid anion (LCFA(-)) (Taniyama et al. 1999, Hiraoka et al. 2002).

Followed by: GPCho is hydrolyzed to Cho and G3P by GPCPD1

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-12-14</td>
<td>Authored, Edited</td>
<td>Jassal, B.</td>
</tr>
<tr>
<td>2017-01-06</td>
<td>Reviewed</td>
<td>D’Eustachio, P.</td>
</tr>
</tbody>
</table>
GPCho is hydrolyzed to Cho and G3P by GPCPD1

Location: Hydrolysis of LPC

Stable identifier: R-HSA-1483116

Type: transition

Compartments: cytosol

Inferred from: GPCho is hydrolyzed to Cho and G3P by Gpcpd1 (Mus musculus)

In the cytosol, glycerophosphocholine phosphodiesterase (GPCPD1, also known as GDE5) hydrolyzes glycerophosphocholine (GPCho) to produce choline (Cho) and glycerol-3-phosphate (G3P). This event has been inferred from mice. GPCPD1 has also been characterized in humans (Ota et al. 2004).

Preceded by: 1-acyl LPC is hydrolyzed to GPCho by PLA2[8], 1-acyl LPC is hydrolyzed to GPCho by PLA2G4C, 2-acyl LPC is hydrolyzed to GPCho by PLA2[8], 2-acyl LPC is hydrolyzed to GPCho by PLA2G4C, PLA2G15 hydrolyses LPC to GPCho and LCFA(-)

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-12</td>
<td>Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2011-09-14</td>
<td>Authored</td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction

Hydrolysis of LPC

1-acyl LPC is hydrolyzed to GPCho by PLA2[8]

1-acyl LPC is hydrolyzed to GPCho by PLA2G4C

2-acyl LPC is hydrolyzed to GPCho by PLA2[8]

2-acyl LPC is hydrolyzed to GPCho by PLA2G4C

PLA2G15 hydrolyses LPC to GPCho and LCFA(-)

GPCho is hydrolyzed to Cho and G3P by GPCPD1

Table of Contents