Reversible hydration of carbon dioxide

Jassal, B., May, B., Silverman, DN.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

13/11/2022

https://reactome.org
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 82

This document contains 1 pathway and 8 reactions (see Table of Contents)

https://reactome.org
Carbonic anhydrases reversibly catalyze the hydration of carbon dioxide and directly produce bicarbonate and protons, bypassing the formation of carbonic acid (reviewed in Lindskog 1997, Breton 2001, Esbaugh and Tufts 2006, Boron 2010, Gilmour 2010). Carbonic anhydrase deprotonates water to yield a zinc-hydroxyl group and a proton which is transferred to external buffer molecules via histidine or glutamate residues in carbonic anhydrase. The hydroxyl group reacts with carbon dioxide in the active site to yield bicarbonate. A water molecule displaces the bicarbonate and the reaction cycle begins again. There are currently 12 known active carbonic anhydrases in humans.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-06</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-05-16</td>
<td>Reviewed</td>
<td>Jassal, B., Silverman, DN.</td>
</tr>
</tbody>
</table>
Carbonic anhydrase hydrates carbon dioxide (cytosol)

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1475026

Type: transition

Compartments: cytosol

Carbonic anhydrase I (CA1, Khalifah 1971, Simonsson et al. 1982, Ren and Lindskog 1992), carbonic anhydrase II (CA2, Tibell et al. 1984, Jones and Shaw 1983, Pesando 1975, Ghannam et al. 1986), carbonic anhydrase III (CA3, Carter et al. 1979, Tu et al. 1990, Tu et al. 1994, Tu et al. 1998, Silverman et al. 1993), carbonic anhydrase VII (CA7, Bootorabi et al. 2010, Gitto et al. 2010) hydrate carbon dioxide to yield bicarbonate and a proton. Carbonic anhydrase deprotonates water to yield a zinc-hydroxyl group and a proton which is transferred to external buffer molecules via histidine or glutamate residues in carbonic anhydrase. The hydroxyl group reacts with carbon dioxide in the active site to yield bicarbonate. A water molecule displaces the bicarbonate and the reaction cycle begins again (reviewed in Lindskog 1997). Depending on the concentrations of reactants the reaction is reversible.

CA2 and CA7 have high catalytic activity, CA1 has low activity (10% of the activity of CA2), and CA3 has very low activity (1% of the activity of CA2). CA1 and CA2 are found in erythrocytes. CA2 is also found in kidney, lung, and white muscle where it facilitates diffusion of carbon dioxide. CA3 is found in red muscle where it participates in resistance against oxidative stress.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-06</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-05-16</td>
<td>Reviewed</td>
<td>Jassal, B., Silverman, DN.</td>
</tr>
</tbody>
</table>
Carbonic anhydrase dehydrates bicarbonate (cytosol)

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1475022

Type: transition

Compartments: cytosol

CA2 and CA7 have high catalytic activity, CA1 has low activity (10% of the activity of CA2), and CA3 has very low activity (1% of the activity of CA2). CA1 and CA2 are found in erythrocytes. CA2 is also found in kidney, lung, and white muscle where it facilitates diffusion of carbon dioxide. CA3 is found in red muscle where it participates in resistance against oxidative stress.

Literature references

Editions

Carbonic anhydrase hydrates carbon dioxide (plasma membrane)

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1475025

Type: transition

Compartments: plasma membrane, extracellular region

Carbonic anhydrase IV (CA4, Zhu and Sly 1990, Okuyama et al. 1992, Baird et al. 1997, Innocenti et al. 2004), carbonic anhydrase IX (CA9, Wingo et al. 2001, Hilvo et al. 2008), carbonic anhydrase XII (CA12, Ulmasov et al. 2000, Pastorekova et al. 2008), and carbonic anhydrase XIV (CA14, Ozensoy et al. 2005, Temperini et al. 2008) are membrane-bound enzymes that hydrate extracellular carbon dioxide to yield bicarbonate and a proton. Carbonic anhydrase deprotonates water to yield a zinc-hydroxyl group and a proton which is transferred to external buffer molecules via histidine or glutamate residues in carbonic anhydrase. The hydroxyl group reacts with carbon dioxide in the active site to yield bicarbonate. A water molecule displaces the bicarbonate and the reaction cycle begins again (reviewed in Lindskog 1997). Depending on the concentrations of reactants the reaction is reversible.

CA4 has high catalytic activity. CA9, CA12, and CA14 have moderate activity. CA4 is anchored to the extracellular face of the plasma membrane by glycosylphosphatidylinositol. CA9, CA12, and CA14 are single-pass transmembrane proteins. CA4 is found on the extracellular face of capillaries in kidney, lung, and muscle where it maintains the gradient of carbon dioxide between tissue and blood. CA9 and CA12 are found on basolateral membranes of epithelia. CA9 is inducible by Hypoxia-inducible factor 1 alpha (HIF1alpha) and acidifies the extracellular environment of tumors. In rodents CA15 is membrane anchored and has low activity; in primates CA15 is a pseudogene.

Literature references

https://reactome.org

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-06</td>
<td>Author, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-05-16</td>
<td>Reviewed</td>
<td>Jassal, B., Silverman, DN.</td>
</tr>
</tbody>
</table>
Carbonic anhydrase dehydrates bicarbonate (plasma membrane)

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1475017

Type: transition

Compartments: plasma membrane, extracellular region

CA4 has high catalytic activity. CA9, CA12, and CA14 have moderate activity. CA4 is anchored to the extracellular face of the plasma membrane by glycosylphosphatidylinositol. CA9, CA12, and CA14 are single-pass transmembrane proteins. CA4 is found on the extracellular face of capillaries in kidney, lung, and muscle where it maintains the gradient of carbon dioxide between tissue and blood. CA9 and CA12 are found on basolateral membranes of epithelia. CA9 is inducible by Hypoxia-inducible factor 1 alpha (HIF1alpha) and acidifies the extracellular environment of tumors. In rodents CA15 is membrane anchored and has low activity; in primates CA15 is a pseudogene.

Literature references

<table>
<thead>
<tr>
<th>Date</th>
<th>Role</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-06</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-05-16</td>
<td>Reviewed</td>
<td>Jassal, B., Silverman, DN.</td>
</tr>
</tbody>
</table>
Carbonic anhydrase hydrates carbon dioxide (mitochondria)

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1475032

Type: transition

Compartments: mitochondrial matrix

Carbonic anhydrase VA (CA5A, Nagao et al. 1993, Franchi et al. 2003, Nishimori et al. 2007) and carbonic anhydrase VB (CASB, Fujikawa-Adachi et al. 1999, Nishimori et al. 2005, Nishimori et al. 2007) hydrate carbon dioxide in mitochondria to yield bicarbonate and a proton. Carbonic anhydrase deprotonates water to yield a zinc-hydroxyl group and a proton which is transferred to external buffer molecules via histidine or glutamate residues in carbonic anhydrase. The hydroxyl group reacts with carbon dioxide in the active site to yield bicarbonate. A water molecule displaces the bicarbonate and the reaction cycle begins again (reviewed in Lindskog 1997). Depending on the concentrations of reactants the reaction is reversible.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-08-06</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-05-16</td>
<td>Reviewed</td>
<td>Jassal, B., Silverman, DN</td>
</tr>
</tbody>
</table>
Carbonic anhydrase dehydrates bicarbonate (mitochondria)

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1475028

Type: transition

Compartments: mitochondrial matrix

Literature references

Editions

2011-08-06 Authorised, Edited
2012-05-16 Reviewed

https://reactome.org
Carbonic anhydrase VI (CA6) hydrates carbon dioxide to yield bicarbonate and a proton (Thatcher et al. 1998, Nishimori et al. 2007). Carbonic anhydrase deprotonates water to yield a zinc-hydroxyl group and a proton which is transferred to external buffer molecules via histidine or glutamate residues in carbonic anhydrase. The hydroxyl group reacts with carbon dioxide in the active site to yield bicarbonate. A water molecule displaces the bicarbonate and the reaction cycle begins again (reviewed in Lindskog 1997). Depending on the concentrations of reactants the reaction is reversible. CA6 is a major protein of saliva and is also known as gustin.

Literature references

Carbonic anhydrase VI dehydrates bicarbonate to water and carbon dioxide

Location: Reversible hydration of carbon dioxide

Stable identifier: R-HSA-1237081

Type: transition

Compartments: extracellular region

Carbonic anhydrase VI (CA6) dehydrates bicarbonate to yield water and carbon dioxide (Thatcher et al. 1998, Nishimori et al. 2007). Depending on the concentrations of reactants the reaction is reversible. CA6 is a major protein of saliva and is also known as gustin.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Details</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-03-24</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-05-16</td>
<td>Reviewed</td>
<td>Jassal, B., Silverman, DN.</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction 1

- Reversible hydration of carbon dioxide 2
 - Carbonic anhydrase hydrates carbon dioxide (cytosol) 3
 - Carbonic anhydrase dehydrates bicarbonate (cytosol) 5
 - Carbonic anhydrase hydrates carbon dioxide (plasma membrane) 6
 - Carbonic anhydrase dehydrates bicarbonate (plasma membrane) 8
 - Carbonic anhydrase hydrates carbon dioxide (mitochondria) 10
 - Carbonic anhydrase dehydrates bicarbonate (mitochondria) 11
 - Carbonic Anhydrase VI hydrates carbon dioxide to bicarbonate and a proton 12
 - Carbonic anhydrase VI dehydrates bicarbonate to water and carbon dioxide 13

Table of Contents 14