Cleavage of P-ERBB4jmA isoforms by ADAM17

Earp HS, 3rd., Harris, RC., Matthews, L., Misior, AM., Orlic-Milacic, M., Stern, DF., Zeng, F.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

31/10/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references


Reactome database release: 82

This document contains 1 reaction (see Table of Contents)

https://reactome.org
Cleavage of P-ERBB4jmA isoforms by ADAM17

Stable identifier: R-HSA-1251992

Type: transition

Compartments: extracellular region, plasma membrane

Inferred from: Cleavage of P-ERBB4jmA isoforms by Adam17 (Homo sapiens)

Phosphorylated ligand-bound homodimers of ERBB4 JM-A isoforms are cleaved by ADAM17 metalloproteinase to yield ligand-bound ERBB4 extracellular domain and membrane bound ERBB4 fragment of 80 kDa (ERBB4m80) (Rio et al. 2000, Cheng et al. 2003).

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-11-04</td>
<td>Authored</td>
<td>Orlic-Milacic, M.</td>
</tr>
<tr>
<td>2011-11-07</td>
<td>Edited</td>
<td>Matthews, L.</td>
</tr>
<tr>
<td>2011-11-11</td>
<td>Reviewed</td>
<td>Harris, RC., Zeng, F.</td>
</tr>
<tr>
<td>2012-02-20</td>
<td>Reviewed</td>
<td>Earp HS, 3rd., Misior, AM.</td>
</tr>
<tr>
<td>2019-02-21</td>
<td>Authored</td>
<td>Stern, DF.</td>
</tr>
<tr>
<td>2019-03-06</td>
<td>Edited</td>
<td>Orlic-Milacic, M.</td>
</tr>
</tbody>
</table>