Activation of NF-kappaB in B cells

May, B., Wienands, J.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

25/06/2019
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 69

This document contains 1 pathway and 10 reactions (see Table of Contents)
Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1169091

Compartments: cytosol, nucleoplasm, plasma membrane

Literature references

PRKCB (Protein kinase C beta, PKC-beta) binds diacylglycerol and phosphatidyserine

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168373

Type: binding

Compartments: cytosol, plasma membrane

Human Protein kinase C beta (PKC-beta) is activated by calcium ions, diacylglycerol, and binds phosphatidyserine (Kochs et al. 1991). Experiments in mice have shown that knocking out PKC-beta causes severe defects in B cells, leading to the conclusion that PKC-beta is the predominant signaling PKC in these cells (Leitges et al. 1996, Su et al. 2002, Saijo et al. 2002).

Followed by: PRKCB (PKC-beta) phosphorylates CARMA1

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Author/Editor</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-09</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
PRKCB (PKC-beta) phosphorylates CARMA1

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168635

Type: omitted

Compartments: cytosol, plasma membrane

CARMA1 is phosphorylated at serines 559, 644, and 652 by Protein Kinase C beta (PKC-beta) (Sommer et al. 2005). CARMA1 is constitutively oligomerized (Tanner et al. 2007) and most CARMA1 in unstimulated cells is cytosolic (Sommer et al. 2005, Tanner et al. 2007), though a portion is constitutively associated with the plasma membrane (Gaide et al. 2002, Sommer et al. 2005). After phosphorylation, CARMA1 is associated with lipid rafts in the plasma membrane (Sommer et al. 2005). Note that some publications refer to CARMA1 with a different N-terminal methionine that is 7 amino acids shorter. In this case the phosphorylated serines are 552, 537, and 645.

Preceded by: PRKCB (Protein kinase C beta, PKC-beta) binds diacylglycerol and phosphatidylinerine

Followed by: CARMA1 recruits MALT1 and BCL10 forming CBM Complex

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
CARMA1 recruits MALT1 and BCL10 forming CBM Complex

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168644

Type: binding

Compartments: cytosol, plasma membrane

CARMA1 is phosphorylated and recruits BCL10 and MALT1 to the plasma membrane to form the CBM complex (Sommer et al. 2005, Tanner et al. 2007). Evidence from T cells (Jurkat cells) indicates that MALT1 and BCL10 oligomerize to activate the IKK complex (Zhou 2004).

Preceded by: PRKCB (PKC-beta) phosphorylates CARMA1

Followed by: CARMA1:BCL10:MALT1 complex recruits TAK1 and IKK

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Authored, Edited</th>
<th>Reviewed</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>May, B.</td>
<td>Wienands, J.</td>
<td></td>
</tr>
<tr>
<td>2012-02-12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CARMA1:BCL10:MALT1 complex recruits TAK1 and IKK

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168637

Type: omitted

Compartments: cytosol, plasma membrane

Inferred from: CARMA1 recruits TAK1 and the IKK complex (Gallus gallus)

TAK1 and the IKK complex are observed to migrate from the cytosol to lipid rafts containing the CARMA1:BCL10:MALT1 (CBM) complex (Sommer et al. 2005, Shinohara et al. 2005 using chicken cells). By analogy with activation of NF-KappaB signaling in T cells, TAK1 in B cells may also be bound to TAB1 and TAB2 or TAB3, which bind K63-conjugated polyubiquitin on a TRAF protein bound to the CBM complex (reviewed in Shinohara et al. 2009).

Preceded by: CARMA1 recruits MALT1 and BCL10 forming CBM Complex

Followed by: TAK1 associated with the CBM complex phosphorylates IKKbeta

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
TAK1 associated with the CBM complex phosphorylates IKKbeta

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168641

Type: transition

Compartments: plasma membrane, cytosol

Inferred from: Phosphorylation of IKKs complex by activated TAK1 (Gallus gallus), Activated TAK1 mediates phosphorylation of the IKK Complex (Homo sapiens)

TAK1 phosphorylates IKK-beta (Wang et al. 2001). As inferred from chicken B cells, the reaction in human B cells may occur when TAK1 and the IKK complex are associated with the CARMA1:BCL10:MALT1 (CBM) complex. During T cell activation TAK1 forms a complex with TAB1 and TAB2, which binds K-63 conjugated polyubiquitin attached to TRAF6 associated with the CBM complex (Sun et al. 2004, reviewed in Shinohara et al. 2009). TRAF6 also polyubiquitinates IKK-gamma in T cells (Zhou et al. 2004). B cells contain functional TRAF6 and TRAF2 (Zhang et al. 2010) so the same mechanism may occur during activation of B cells.

Preceded by: CARMA1:BCL10:MALT1 complex recruits TAK1 and IKK

Followed by: Activated IKK phosphorylates I-kappaB

Literature references

<table>
<thead>
<tr>
<th>Date</th>
<th>Role</th>
<th>Author/Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
Activated IKK phosphorylates I-kappaB

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168638

Type: transition

Compartments: cytosol

Preceded by: TAK1 associated with the CBM complex phosphorylates IKKbeta

Followed by: SCF with beta-TrCP1 or beta-TrCP2 binds NF-kappaB:phospho-IkB

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-01-19</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
SCF with beta-TrCP1 or beta-TrCP2 binds NF-kappaB:phospho-IkB

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168642

Type: binding

Compartments: cytosol

Preceded by: Activated IKK phosphorylates I-kappaB

Followed by: SCF-beta-TrCP ubiquitinylates IkB

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Authored, Edited</th>
<th>Reviewed</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>May, B.</td>
<td>Wienands, J.</td>
<td></td>
</tr>
<tr>
<td>2012-02-12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCF-beta-TrCP ubiquitinylates IkB

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168643

Type: omitted

Compartments: cytosol

Preceded by: SCF with beta-TrCP1 or beta-TrCP2 binds NF-kappaB:phospho-IkB

Followed by: Ubiquitinated IkB is degraded

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
Ubiquitinated IkB is degraded

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168640

Type: omitted

Compartments: cytosol

Preceded by: SCF-beta-TrCP ubiquitinylates IkB

Followed by: NF-kappaB translocates from the cytosol to the nucleus

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>Authored, Edited</td>
<td>May, B.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td>Reviewed</td>
<td>Wienands, J.</td>
</tr>
</tbody>
</table>
NF-kappaB translocates from the cytosol to the nucleus

Location: Activation of NF-kappaB in B cells

Stable identifier: R-HSA-1168633

Type: omitted

Compartments: cytosol, nucleoplasm

Nf-kappaB subunits contain nuclear localization sequences and, in the absence of IkB, are translocated to the nucleus (Baeuerle and Baltimore 1988, Blank et al. 1991, Ghosh et al. 2008, Fagerlund et al. 2008). c-Rel binds to importins alpha5, alpha6, and alpha7; RelB binds to importins alpha5 and alpha6; p52 binds importin alpha3, alpha4, alpha5, and alpha6 (Fagerlund et al. 2008)

Preceded by: Ubiquitinated IkB is degraded

Literature references

Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Authored, Edited</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-19</td>
<td>May, B.</td>
<td>Wienands, J.</td>
</tr>
<tr>
<td>2012-02-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

- Introduction
- Activation of NF-kappaB in B cells
 - PRKCB (Protein kinase C beta, PKC-beta) binds diacylglycerol and phosphatidyserine
 - PRKCB (PKC-beta) phosphorylates CARMA1
 - CARMA1 recruits MALT1 and BCL10 forming CBM Complex
 - CARMA1:BCL10:MALT1 complex recruits TAK1 and IKK
 - TAK1 associated with the CBM complex phosphorylates IKKbeta
 - Activated IKK phosphorylates I-kappaB
 - SCF with beta-TrCP1 or beta-TrCP2 binds NF-kappaB:phospho-IkB
 - SCF-beta-TrCP ubiquitinylates IkB
 - Ubiquitinated IkB is degraded
 - NF-kappaB translocates from the cytosol to the nucleus