DS ligand bound to FT receptor

Irvine, KD., Williams, MG.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

26/12/2022
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Reactome database release: 83

This document contains 5 pathways and 3 reactions (see Table of Contents)
DS ligand bound to FT receptor

Stable identifier: R-DME-390150

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Role</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-01-23</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
</tbody>
</table>
Subcellular localisation of D

Location: DS ligand bound to FT receptor

Stable identifier: R-DME-390023

Compartments: cytosol

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-01-23</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
</tbody>
</table>
Formation of the Hippo kinase cassette

Location: DS ligand bound to FT receptor

Stable identifier: R-DME-390089

Compartments: cytosol

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-01-23</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
</tbody>
</table>

https://reactome.org
Phosphorylation-dependent inhibition of YKI

Location: DS ligand bound to FT receptor

Stable identifier: R-DME-390098

Compartments: cytosol

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-01-23</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
</tbody>
</table>
Phosphorylation-independent inhibition of YKI

Location: DS ligand bound to FT receptor

Stable identifier: R-DME-451806

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
<tr>
<td>2010-01-14</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>
Activated Hippo (HPO) serine/threonine kinase phosphorylates Thread (TH) aka drosophila inhibitor of apoptosis protein 1 (Diap1) at unknown residues. This affects TH’s stability.

Literature references

Ras association family member (RASSF) associates with inactive Hippo (HPO) kinase homodimer through their shared SARAH (Salvador/Rassf/Hippo) domains. It should be noted that Hippo (HPO) kinase domain also associates with scaffolding protein Salvador (SAV) through SARAH domains. However, RASSF fails to bind to SAV. HPO associated with RASSF shows barely detectable levels of phosphorylation. In this complex, HPO homodimer remains unphosphorylated and inactive. Thus, RASSF restricts HPO activity by competing with SAV for binding to HPO homodimer.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-01-23</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
</tbody>
</table>
The small protein Lowfat (LFT) binds to the cytoplasmic domains of the cadherin domain containing transmembrane proteins Fat (FT) and Dachsous (DS). The function of LFT is currently unknown but it does appear to increase FT and DS protein levels.

Literature references

Editions

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Author/Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-11-25</td>
<td>Reviewed</td>
<td>Irvine, KD.</td>
</tr>
<tr>
<td>2010-01-14</td>
<td>Authored, Edited</td>
<td>Williams, MG.</td>
</tr>
</tbody>
</table>

https://reactome.org
Table of Contents

- Introduction
- DS ligand bound to FT receptor
- Subcellular localisation of D
- Formation of the Hippo kinase cassette
- Phosphorylation-dependent inhibition of YKI
- Phosphorylation-independent inhibition of YKI
- Phosphorylated HPO dimer phosphorylates TH
- HPO dimer binds to RASSF
- LFT binds to FT and DS

Table of Contents