Reactome: A Curated Pathway Database

Inositol phosphate metabolism

Stable Identifier
Homo sapiens
Locations in the PathwayBrowser

Inositol phosphates (IPs) are molecules involves in signalling processes in eukaryotes. myo-Inositol consists of a six-carbon cyclic alcohol with an axial 2-hydroxy and five equatorial hydroxyls. Mono-, di-, and triphosphorylation of the inositol ring generates a wide variety of stereochemically distinct signalling entities. Inositol 1,4,5-trisphosphate (I(1,4,5)P3), is formed when the phosphoinositide phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is hydrolysed by a phospholipase C isozyme. An array of inositol trisphosphate (IP3) and tetrakisphosphate (IP4) molecules are synthesised by the action of various kinases and phosphatases in the cytosol. These species then transport between the cytosol and the nucleus where they are acted on by inositol polyphosphate multikinase (IPMK), inositol-pentakisphosphate 2-kinase (IPPK), inositol hexakisphosphate kinase 1 (IP6K1) and 2 (IP6K2), to produce IP5, IP6, IP7, and IP8 molecules. Some of these nuclear produced IPs transport back to the cytosol where they are converted to an even wider variety of IPs, by kinases and phosphatases, including the di- and triphospho inositol phosphates aka pyrophosphates (Irvine & Schell 2001, Bunney & Katan 2010, Alcazar-Romain & Wente 2008, York 2006, Monserrate and York 2010).

Literature References
Participant Of
Orthologous Events